Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (10): 1567-1578    DOI: 10.11900/0412.1961.2023.00499
Research paper Current Issue | Archive | Adv Search |
Plastic Deformation Behaviors of VCoNi Medium-Entropy Alloy Under Nanoindentation
WANG Fangyuan1, ZHANG Yulong2, WANG Zhangwei1(), XIONG Zhiping3, WANG Hui4, SONG Min1, XIA Wenzhen2()
1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
2 Institute of Microstructure and Micro/nano-mechanics, School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
3 National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing Institute of Technology, Beijing 100081, China
4 State Key Laboratory for Advance Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

WANG Fangyuan, ZHANG Yulong, WANG Zhangwei, XIONG Zhiping, WANG Hui, SONG Min, XIA Wenzhen. Plastic Deformation Behaviors of VCoNi Medium-Entropy Alloy Under Nanoindentation. Acta Metall Sin, 2025, 61(10): 1567-1578.

Download:  HTML  PDF(3596KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High- and medium-entropy alloys have attracted considerable attention because of their innovative design concepts. The VCoNi medium-entropy alloy with equiatomic ratio, a distinctive type of medium-entropy alloy, is characterized by a fcc structure. As it exhibits remarkable mechanical properties such as strength and plasticity across a broad temperature spectrum, it is suitable for versatile applications. Current research on VCoNi medium-entropy alloys predominantly focuses on the alloy design and the manipulation of heat treatment technologies to enhance mechanical properties with relatively less emphasis on elucidating plastic deformation mechanisms. A profound understanding of these mechanisms is imperative for controlling their properties. Although previous studies have revealed plastic deformation mechanisms mediated by dislocations in VCoNi medium-entropy alloys, the impact of grain orientation on dislocation movement and interaction mechanisms remains elusive. Nanoindentation technology has been widely used to assess plastic deformation behavior and dislocation evolution in materials. Grain orientation profoundly influences the mechanical properties and plastic deformation behavior of materials at the microscale. Therefore, investigating the influence of grain orientation on the plastic deformation mechanism in the VCoNi medium-entropy alloy is of great importance. A comprehensive understanding of plastic deformation and dislocation interactions can be achieved by analyzing slip steps generated by nanoindentation. This study delves into the plastic deformation behavior of VCoNi medium-entropy alloy in {101}, {111}, and {001} grains using nanoindentation. By analyzing the evolution of slip steps and load-displacement curves, it concentrates on the influence of crystal orientation on plastic deformation behavior and explores the intricate relationship among dislocation interactions, load-displacement behavior, and dislocation motion. The grain orientation in the VCoNi medium-entropy alloy dictates the activation and sequence of slip systems induced by nanoindentation, thereby substantially influencing the morphology of indentations, surrounding slip steps, and load-displacement behavior. The slip steps on the same slip plane in each grain preferentially appear on a positively inclined slip plane. On {101} grains, the slip steps appear on the (111) and (111¯) slip planes initially, and then on the (11¯1¯) and (11¯1) slip planes. In {111} grains, the slip steps appear on the (111¯), (11¯1¯), and (11¯1) slip planes. On {001} grains, the slip steps appear on the four {111} slip planes. {101}, {111}, and {001} grains exhibit butterfly-shaped, nested triangle-shaped, and cross-shaped overall indentation morphologies, respectively. Additionally, only a limited occurrence of double cross-slip is observed at the edges of the slip steps in {101} and {001} grains. The analysis of dislocation interactions revealed that on {101} grains, dislocation reactions tended to form Lomer-Cottrell locks and Glissile junctions, in {111} grains they tended to form Collinear junctions and Lomer-Cottrell locks, and in {001} grains they tended to form Glissile junctions. This determination influences the subsequent pop-in behavior in the load-displacement curves of different grains.

Key words:  medium-entropy alloy      nanoindentation      slip step      plasticity      dislocation interaction     
Received:  29 December 2023     
ZTFLH:  TG111  
Fund: National Key Research and Development Program of China(2022YFE0134400);Young Scientists Fund of National Natural Science Foundation of China(52201057);National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(6142902220101);State Key Laboratory for Advanced Metals and Materials(2023-Z05)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00499     OR     https://www.ams.org.cn/EN/Y2025/V61/I10/1567

Fig.1  Secondary electron (SE) images and inverse pore figures (insets) (a-c), corresponding schematics of slip planes (d-f), and electron channeling contrast imaging (ECCI) images and corresponding schematics (insets) (g, h) of grains with different orientations under 80 mN indentation load (P represents positive inclined, N represents negative inclined. Boxes 1, 2, and 3 in Figs.1a and c represent regions where double cross-slip exists. In Figs.1d-f, white lines represent the intersection line between the slip planes and the surface, which are the slip steps; bolded portions at the edges of the slip planes represent the angles closer to the sample surface, indicating the inclination angles between the slip planes and the surface)
(a, d, g) {101} grain (b, e) {111} grain (c, f, h) {001} grain
Fig.2  Partially enlarged SE images of slip steps in {101} grain (a) and {001} grain (b, c) under 80 mN indentation load (Dotted rectangles represent the slip steps formed by dislocations sliding along the slip plane before double cross-slip, solid rectangles represent the slip steps formed by dislocations sliding along the slip plane after double cross-slip.b—Burgers vector)
(a) box 1 in Fig.1a (b) box 2 in Fig.1c (c) box 3 in Fig.1c
Fig.3  SE images of {101} (a-c), {111} (d-f), and {001} (g-i) grains under indentation loads of 5 mN (a, d, g), 10 mN (b, e, h), and 20 mN (c, f, i) (Boxes 1-6 represent regions where dislocation interactions exist)
Fig.4  Load-displacement (P-h) curves of {101} (a), {111} (b), and {001} (c) grains and plastic work distributions (d) under different indentation loads (Insets in Figs.4a and b are enlarged images of pop-in. Red arrows and numbers together indicate the location of the subsequent pop-in. Wp—plastic work)
Slipb(11¯1¯)(111)(111¯)(11¯1)
plane1/2[110]1/2[011¯]1/2[101]1/2[1¯01]1/2[1¯10]1/2[011¯]1/2[011]1/2[1¯10]1/2[101]1/2[1¯01]1/2[011]1/2[110]
(11¯1¯)1/2[110]-CoplCoplLomHirthGlissLomHirthGlissGlissGlissColl
1/2[011¯]Copl-CoplGlissGlissCollHirthLomGlissLomHirthGliss
1/2[101]CoplCopl-HirthLomGlissGlissGlissCollHirthLomGliss
(111)1/2[1¯01]LomGlissHirth-CoplCoplLomGlissHirthCollGlissGliss
1/2[1¯10]HirthGlissLomCopl-CoplGlissCollGlissGlissLomHirth
1/2[011¯]GlissCollGlissCoplCopl-HirthGlissLomGlissHirthLom
(111¯)1/2[011]LomHirthGlissLomGlissHirth-CoplCoplGlissCollGliss
1/2[1¯10]HirthLomGlissGlissCollGlissCopl-CoplLomGlissHirth
1/2[101]GlissGlissCollHirthGlissLomCoplCopl-HirthGlissLom
(11¯1)1/2[1¯01]GlissLomHirthCollGlissGlissGlissLomHirth-CoplCopl
1/2[011]GlissHirthLomGlissLomHirthCollGlissGlissCopl-Copl
1/2[110]CollGlissGlissGlissHirthLomGlissHirthLomCoplCopl-
Table 1  Types of perfect dislocation reactions in fcc metal
Fig.5  Partially enlarged SE images of slip steps and schematics of slip planes (insets) of {101} grain in Fig.3a (a, b), {111} grain in Fig.3d (c, d), and {001}grain in Fig.3g (e, f) (Red arrows in boxes indicate the direction of dislocation movement; 1-6 represent the junctions of dislocation interactions)
[1] George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
[2] Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
doi: 10.1038/s41467-019-13311-1 pmid: 31819051
[3] Wang Z W, Lu W J, Zhao H, et al. Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation [J]. Sci. Adv., 2020, 6: eaba9543
[4] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
[5] Liu J P, Chen H, Zhang C, et al. Progress of cryogenic deformation and strengthening-toughening mechanisms of high-entropy alloys [J]. Acta Metall. Sin., 2023, 59: 727
doi: 10.11900/0412.1961.2022.00598
刘俊鹏, 陈 浩, 张 弛 等. 高熵合金的低温塑性变形机制及强韧化研究进展 [J]. 金属学报, 2023, 59: 727
doi: 10.11900/0412.1961.2022.00598
[6] An Z B, Mao S C, Zhang Z, et al. Strengthening-toughening mechanism and mechanical properties of span-scale heterostructure high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
安子冰, 毛圣成, 张 泽 等. 高熵合金跨尺度异构强韧化及其力学性能研究进展 [J]. 金属学报, 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
[7] Sohn S S, Da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
[8] Chen X F, Yuan F P, Zhou H, et al. Structure motif of chemical short-range order in a medium-entropy alloy [J]. Mater. Res. Lett., 2022, 10: 149
[9] Cai W J, He J Y, Wang L, et al. Characterization of chemical short-range order in VCoNi medium-entropy alloy processed by spark plasma sintering [J]. Scr. Mater., 2023, 231: 115463
[10] Liu G D, Luo X M, Zou J P, et al. Effects of grain size and cryogenic temperature on the strain hardening behavior of VCoNi medium-entropy alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 973
[11] Yang D C, Jo Y H, Ikeda Y, et al. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90: 159
doi: 10.1016/j.jmst.2021.02.034
[12] Luo H, Sohn S S, Lu W J, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion [J]. Nat. Commun., 2020, 11: 3081
doi: 10.1038/s41467-020-16791-8 pmid: 32555177
[13] Lee S, Vaid A, Im J, et al. In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops [J]. Nat. Commun., 2020, 11: 2367
doi: 10.1038/s41467-020-15775-y pmid: 32398690
[14] Habiyaremye F, Guitton A, Schäfer F, et al. Plasticity induced by nanoindentation in a CrCoNi medium-entropy alloy studied by accurate electron channeling contrast imaging revealing dislocation-low angle grain boundary interactions [J]. Mater. Sci. Eng., 2021, A817: 141364
[15] Ye Y X, Lu Z P, Nieh T G. Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy [J]. Scr. Mater., 2017, 130: 64
[16] Hua D P, Xia Q S, Wang W, et al. Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation [J]. Int. J. Plast., 2021, 142: 102997
[17] Zhang Y W, Li S J, Hao Y L, et al. Nanoindentation study on Ti-24Nb-4Zr-8Sn single crystals [J]. Chin. J. Nonferrous Met., 2010, 20(Spec.1) : S528
张晏玮, 李述军, 郝玉琳 等. Ti-24Nb-4Zr-8Sn合金单晶纳米压痕研究 [J]. 中国有色金属学报, 2010(专辑)825S :02,1
[18] Salehinia I, Lawrence S K, Bahr D F. The effect of crystal orientation on the stochastic behavior of dislocation nucleation and multiplication during nanoindentation [J]. Acta Mater., 2013, 61: 1421
[19] Chen T Y, Tan L Z, Lu Z Z, et al. The effect of grain orientation on nanoindentation behavior of model austenitic alloy Fe-20Cr-25Ni [J]. Acta Mater., 2017, 138: 83
[20] Csanádi T, Bl'anda M, Chinh N Q, et al. Orientation-dependent hardness and nanoindentation-induced deformation mechanisms of WC crystals [J]. Acta Mater., 2015, 83: 397
[21] Kang S, Jung Y S, Yoo B G, et al. Orientation-dependent indentation modulus and yielding in a high Mn twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2012, A532: 500
[22] Sarvesha R, Gokhale A, Kumar K, et al. Effect of crystal orientation on indentation-induced deformation behavior of zinc [J]. Mater. Sci. Eng., 2020, A776: 139064
[23] McInteer W A, Thompson A W, Bernstein I M. The effect of hydrogen on the slip character of nickel [J]. Acta Metall., 1980, 28: 887
[24] Tromas C, Girard J C, Audurier V, et al. Study of the low stress plasticity in single-crystal MgO by nanoindentation and atomic force microscopy [J]. J. Mater. Sci., 1999, 34: 5337
[25] Nibur K A, Bahr D F. Identifying slip systems around indentations in fcc metals [J]. Scr. Mater., 2003, 49: 1055
[26] Nibur K A, Akasheh F, Bahr D F. Analysis of dislocation mechanisms around indentations through slip step observations [J]. J. Mater. Sci., 2007, 42: 889
[27] Xia W Z, Dehm G, Brinckmann S. Insight into indentation-induced plastic flow in austenitic stainless steel [J]. J. Mater. Sci., 2020, 55: 9095
[28] Xia W Z, Dehm G, Brinckmann S. Unraveling indentation-induced slip steps in austenitic stainless steel [J]. Mater. Des., 2019, 183: 108169
[29] Johnson K L. Contact Mechanics [M]. Cambridge: Cambridge University Press, 1985: 165
[30] Tuck J R, Korsunsky A M, Bull S J, et al. On the application of the work-of-indentation approach to depth-sensing indentation experiments in coated systems [J]. Surf. Coat. Technol., 2001, 137: 217
[31] Nguyen P C, Ryu I. Mesoscale dislocation dynamics modeling of incipient plasticity under nanoindentation [J]. Materialia, 2023, 32: 101956
[32] Pöhl F. Pop-in behavior and elastic-to-plastic transition of polycrystalline pure iron during sharp nanoindentation [J]. Sci. Rep., 2019, 9: 15350
doi: 10.1038/s41598-019-51644-5 pmid: 31653908
[33] Catoor D, Gao Y F, Geng J, et al. Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation [J]. Acta Mater., 2013, 61: 2953
[34] Montagne A, Audurier V, Tromas C. Influence of pre-existing dislocations on the pop-in phenomenon during nanoindentation in MgO [J]. Acta Mater., 2013, 61: 4778
[35] Xiong K, Gu J F. Understanding pop-in phenomena in FeNi3 nanoindentation [J]. Intermetallics, 2015, 67: 111
[36] Li J Y, Yang S Q, Dong L G, et al. Effect of crystal orientation on the nanoindentation deformation behavior of TiN coating based on molecular dynamics [J]. Surf. Coat. Technol., 2023, 467: 129721
[37] Stricker M, Weygand D. Dislocation multiplication mechanisms-glissile junctions and their role on the plastic deformation at the microscale [J]. Acta Mater., 2015, 99: 130
[38] Katzer B, Zoller K, Bermuth J, et al. Characterization of Lomer junctions based on the Lomer arm length distribution in dislocation networks [J]. Scr. Mater., 2023, 226: 115232
[39] Kumar Panda A, Divakar R, Singh A, et al. Molecular dynamics studies on formation of stacking fault tetrahedra in fcc metals [J]. Comput. Mater. Sci., 2021, 186: 110017
[40] An D Y, Zhao H, Sun B H, et al. Direct observations of collinear dislocation interaction in a Fe-17.4Mn-1.50Al-0.29C (wt.%) austenitic steel under cyclic loading by in-situ electron channelling contrast imaging and cross-correlation electron backscatter diffraction [J]. Scr. Mater., 2020, 186: 341
[1] SHANG Hongchun, TIAN Zhongwang, NIU Lanjie, FAN Chenyang, ZHANG Zhewei, LOU Yanshan. Yield Evolution Behavior Characterization and Crystal Plasticity Simulation for 5182-O Aluminum Alloy[J]. 金属学报, 2025, 61(8): 1276-1292.
[2] FAN Ronglei, CHEN Minghe, WU Dipeng, WU Yong. Prediction of Damage and Hot Forming Limit of TA32 Titanium Alloy Based on Crystal Plasticity Model[J]. 金属学报, 2025, 61(8): 1293-1304.
[3] GE Penghua, ZHANG Yong, LI Zhiming. Soft-Magnetic and Mechanical Behaviors of Heterostructured FeCoNi Medium-Entropy Alloys[J]. 金属学报, 2025, 61(7): 1119-1128.
[4] ZHOU Wenhui, XIONG Jintao, HUANG Sicheng, WANG Penghao, LIU Yong. Formation Mechanism and Deformation Behavior of AZ31 Magnesium Alloy Bimodal Structure[J]. 金属学报, 2025, 61(3): 488-498.
[5] JIA Chunni, LIU Tengyuan, ZHENG Chengwu, WANG Pei, LI Dianzhong. Micro-Deformation Behavior of Austenite Containing Chemical Boundary in a Medium Mn Steel: A Crystal Plasticity Modeling[J]. 金属学报, 2025, 61(2): 349-360.
[6] YU Yunhe, XIE Yong, CHEN Peng, DONG Haokai, HOU Jixin, XIA Zhixin. Interfacial Compatibility for Laser Melting Deposition of CoCrNiCu Medium-Entropy Alloy on 316L Austenitic Stainless Steel Surface[J]. 金属学报, 2024, 60(9): 1213-1228.
[7] NAN Yong, GUAN Xu, YAN Haile, TANG Shuai, JIA Nan, ZHAO Xiang, ZUO Liang. Effect and Mechanism of B Microalloying on the Microstructure and Mechanical Properties of CoNiV Medium-Entropy Alloy[J]. 金属学报, 2024, 60(12): 1647-1655.
[8] LIU Chang, WU Ge, LU Jian. Nanostructural Multi-Principal-Element Alloys: Mechanical Properties and Toughening Mechanisms[J]. 金属学报, 2024, 60(1): 16-29.
[9] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[10] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[11] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[12] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[13] LIU Guang, CHEN Peng, YAO Xiyu, CHEN Pu, LIU Xingchen, LIU Chaoyang, YAN Ming. Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. 金属学报, 2022, 58(8): 1055-1064.
[14] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[15] ZHANG Xinfang, XIANG Siqi, YI Kun, GUO Jingdong. Controlling the Residual Stress in Metallic Solids by Pulsed Electric Current[J]. 金属学报, 2022, 58(5): 581-598.
No Suggested Reading articles found!