Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (7): 926-936    DOI: 10.11900/0412.1961.2022.00224
Current Issue | Archive | Adv Search |
Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy
CHEN Cheng1, YANG Guangyu1(), JIN Menghui1, WANG Qiang1, TANG Xin2, CHENG Huimin3, JIE Wanqi1
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 Key Laboratory of Advanced High Temperature Structural Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
3 Xi'an North Optoelectronics Technology Defense Co. Ltd., China North Industries Group Corporation Limited, Xi'an 710043, China
Cite this article: 

CHEN Cheng, YANG Guangyu, JIN Menghui, WANG Qiang, TANG Xin, CHENG Huimin, JIE Wanqi. Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy. Acta Metall Sin, 2024, 60(7): 926-936.

Download:  HTML  PDF(3027KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The service temperature of K4169 superalloy aeronautic turbine disks and other important aeronautic components is generally below the equi-strength temperature, and grain refinement can significantly improve the service performance. Compared with the conventional gravity casting process, the centrifugal casting process as a dynamic grain refinement method plays an important role in grain refinement, feeding, and molten filling of the casting. A precision casting with typical structural characteristics of the K4169 superalloy was prepared using the centrifugal casting process with the mold positive and negative rotation method and the conventional gravity casting process, respectively. The alloy microstructure, element segregation, secondary phase distribution, fracture microstructure, and mechanical properties at room temperature were compared and studied under two process conditions. The as-cast structure of the K4169 superalloy can be significantly refined using the mold positive and negative rotation method. The grain refinement of the experimental alloy was the most significant when the casting mold was reversed for 4 s, and the grain size under gravity casting decreased from (5.37 ± 0.21) mm to (0.27 ± 0.01) mm. Also, the primary phase of the experimental alloy was broken and the dendrite morphology was degraded that the coarse dendrites were replaced by broken dendrites and rose-shaped crystals after positive and negative rotations. Compared with unidirectional rotation, the segregation of alloying elements decreased, the number of Laves phases in the solidified structure was reduced, and the number of carbides was slightly increased. The tensile strength of the K4169 alloy at room temperature under the positive and negative rotation duration of 4 s was 31.4% higher than that under conventional gravity casting.

Key words:  K4169 superalloy      mold positive and negative rotation      investment casting      solidification microstructure      room-temperature mechanical property     
Received:  07 May 2022     
ZTFLH:  TG249.4  
Fund: National Science and Technology Major Project(J2019-VI-0004-0118)
Corresponding Authors:  YANG Guangyu, professor, Tel: (029)81662098, E-mail: ygy@nwpu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00224     OR     https://www.ams.org.cn/EN/Y2024/V60/I7/926

Fig.1  Dimension (unit: mm) (a) and schematic (b) of the tensile specimen
Fig.2  Microstructures of as-cast K4169 superalloy typical structural parts under different casting processes
(a) conventional casting (CC)
(b) positive and negative rotation (P&NR) for 4 s (P&NR 4s)
(c) P&NR for 8 s (P&NR 8s)
Fig.3  Morphologies of the primary phase of as-cast K4169 superalloy typical structural parts under different processes
(a) CC (b) P&NR 4s (c) P&NR 8s
Fig.4  Segregation coefficients of alloying elements in K4169 superalloy typical structural parts under different casting processes
Fig.5  XRD spectra of as-cast K4169 superalloy typical structural parts under different casting processes
Fig.6  Phases and its EDS analysis locations in the K4169 superalloy
(a) bulk Laves phase (b) eutectic Laves phase (c) MC phase
Position in Fig.6AlTiCrFeNiNbMoC
10.280.8413.769.7136.3631.187.870
203.908.188.1050.3422.167.320
308.240.610.591.1368.870.1820.38
Table 1  EDS analyses of phases in the K4169 alloy
Fig.7  Microhardness of matrix and different second phases in the as-cast K4169 superalloy
Fig.8  Distributions of Laves phase and carbides in as-cast K4169 superalloy typical structural parts under different casting processes (Insets are the corresponding locally magnified images)
(a) CC (b) P&NR 4s (c) P&NR 8s
Fig.9  Area fractions of Laves phase and carbides in the structure of as-cast K4169 superalloy typical structural parts under different casting processes
ProcessUTS / MPaEL / %
CC638.43 ± 10.3619.76 ± 1.24
P&NR 4s838.73 ± 3.4929.83 ± 1.76
P&NR 8s808.16 ± 10.6020.63 ± 0.23
Table 2  Room-temperature tensile mechanical properties of body specimens in as-cast K4169 superalloy typical structural parts under different casting processes
Fig.10  Room-temperature tensile fracture morphologies of as-cast K4169 superalloy typical structural parts under diff-erent casting processes
(a) CC (b) P&NR 4s (c) P&NR 8s
1 Liao D M, Cao L, Chen T, et al. Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method [J]. China Foundry, 2016, 13: 123
2 Ding H S, Wang G T, Chen R R, et al. Microstructure and mechanical properties of Ni3Al intermetallics prepared by directional solidification electromagnetic cold crucible technique [J]. China Foundry, 2017, 14: 169
3 Condruz M R, Matache G, Paraschiv A, et al. Homogenization heat treatment and segregation analysis of equiaxed CMSX-4 superalloy for gas turbine components [J]. J. Therm. Anal. Calorim., 2018, 134: 443
4 Zhang J, Guo Y Y, Zhang M, et al. Low-cycle fatigue and creep-fatigue behaviors of a second-generation nickel-based single-crystal superalloy at 760oC [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1423
5 Zhao G D, Zang X M, Qi F. Effect of boron on isothermal oxidation behavior of a nickel-base superalloy with high Al and Ti contents [J]. J. Alloys Compd., 2020, 846: 156490
6 Rao L S, Raju K, Jha A K, et al. Microstructural and tribological characteristics of Al-10Cu-Fe alloy produced by vertical centrifugal casting process [J]. Trans. Indian Inst. Met., 2018, 71: 1427
7 Rakoczy Ł, Cygan R. Analysis of temperature distribution in shell mould during thin-wall superalloy casting and its effect on the resultant microstructure [J]. Arch. Civil Mech. Eng., 2018, 18: 1441
8 Gao Z T, Hu R, Guo W, et al. Grain refinement by authigenic inoculation inherited from the medium-range order structure of Ni-Cr-W superalloy [J]. J. Mater. Eng. Perform., 2018, 27: 2421
9 Xiong Y H, Wei X Y, Du J, et al. Grain refinement of superalloy IN718C by the addition of inoculants [J]. Metall. Mater. Trans., 2004, 35A: 2111
10 Guan R G, Tie D. A review on grain refinement of aluminum alloys: Progresses, challenges and prospects [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 409
11 Jin W Z, Li T J, Yin G M. Development of dynamic refining technology and its application in superalloy [J]. Foundry, 2007, 56: 6
金文中, 李廷举, 殷国茂. 动力学法晶粒细化技术的进展及在高温合金中的应用 [J]. 铸造, 2007, 56: 6
12 Woulds M, Benson H. Development of a conventional fine grain casting process [A]. Proceedings of the Superalloy 1984 [C]. New York: TMS-AIME, 1984: 3
13 Brinegar J R, Norris L F, Rozenberg L. Microcast-X fine grain casting—A progress report [A]. Proceedings of the Superalloys 1984 [C]. Warrendale: TMS, 1984: 23
14 Yuan W M, Xue G H, Tang X, et al. Research on integral turbine fine grain casting process by mould stirring method [J]. Foundry, 1997, (2): 24
袁文明, 薛广海, 汤 鑫 等. 铸型搅动法整体涡轮细晶铸造工艺的研究 [J]. 铸造, 1997, (2): 24
15 Li F, Wang D H, Jiang Y, et al. Effect of centrifugal casting process on mold filling and grain structure of K418B turbine guide [J]. Int. J. Adv. Manuf. Technol., 2019, 104: 3065
16 Tang X, Yu B Z, Liu F X, et al. Investigation on mechanical properties of fine grain cast by mould agitation [J]. J. Aeron. Mater. 2003, 23(4): 16
汤 鑫, 于保正, 刘发信 等. 铸型搅动细晶铸造与力学性能 [J]. 航空材料学报, 2003, 23(4): 16
17 Hu P P, Gai Q D, Li X H, et al. Effect of mold agitation fine grain casting on microstructure and tensile properties of K492M alloy integral wheel [J]. Foundry, 2016, 65: 1045
胡聘聘, 盖其东, 李相辉 等. 铸型搅动细晶铸造对K492M合金向心叶轮组织与拉伸性能的影响 [J]. 铸造, 2016, 65: 1045
18 Cozar R, Pineau A. Morphology of γ′ and γ″ precipitates and thermal stability of Inconel 718 type alloys [J]. Metall. Mater. Trans., 1973, 4B: 47
19 Hong S Z, Zeng Z P. Effects of the specific pressure on grain size in squeeze casting [J]. Spec. Cast. Nonferrous Alloys, 2002, (6): 26
洪慎章, 曾振鹏. 挤压铸造比压对晶粒尺寸的影响 [J]. 特种铸造及有色合金, 2002, (6): 26
20 Ye X C. Analysis on thermodynamics and dynamics of the microstructure solidified under centrifugal pressure [D]. Harbin: Harbin Institute of Technology, 2006
叶喜葱. 离心压力下凝固组织形成热力学与动力学分析 [D]. 哈尔滨: 哈尔滨工业大学, 2006
21 Hong S J, Chen W P, Wang T W. A diffraction study of the γ" phase in INCONEL 718 superalloy [J]. Metall. Mater. Trans., 2001, 32A: 1887
22 Li A L, Tang X, Gai Q D, et al. Effect of heat treatment on microstructure of K4169 superalloy [J]. J. Aeron. Mater., 2006, 26: 311
李爱兰, 汤 鑫, 盖其东 等. 热处理工艺对K4169合金微观组织的影响 [J]. 航空材料学报, 2006, 26: 311
23 Guo J T. Materials Science and Engineering for Superalloys (Part 1) [M]. Beijing: Science Press, 2008: 30
郭建亭. 高温合金材料学(上) [M]. 北京: 科学出版社, 2008: 30
24 Sims C T. A contemporary view of cobalt-base alloy [J]. JOM, 1969, 21(12): 27
25 Sui Y W. Formation and evolution of defect during the vertical centrifugal casting of titanium alloy [D]. Harbin: Harbin Institute of Technology, 2006
隋艳伟. 钛合金立式离心铸造缺陷形成与演化规律 [D]. 哈尔滨: 哈尔滨工业大学, 2009
26 Zhou Y H, Hu Z L, Jie W Q. Solidification Technology [M]. Beijing: China Machine Press, 1998: 11
周尧和, 胡壮麟, 介万奇. 凝固技术 [M]. 北京: 机械工业出版社, 1998: 11
27 Zhang J, Jie Z Q, Huang T W, et al. Research and development of equiaxed grain solidification and forming technology for nickel-based cast superalloys [J]. Acta Metall. Sin., 2019, 55: 1145
doi: 10.11900/0412.1961.2019.00088
张 军, 介子奇, 黄太文 等. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展 [J]. 金属学报, 2019, 55: 1145
28 Radhakrishna C H, Rao K P. The formation and control of Laves phase in superalloy 718 welds [J]. J. Mater. Sci., 1997, 32: 1977
29 Szeliga D. Manufacturing of thin-walled Ni-based superalloy castings using alternative thermal insulating module to control solidification [J]. J. Mater. Process. Technol., 2020, 278: 116503
30 Ling L S B, Han Y F, Zhou W, et al. Study of microsegregation and laves phase in INCONEL718 superalloy regarding cooling rate during solidification [J]. Metall. Mater. Trans., 2015, 46A: 354
31 Matysiak H, Zagorska M, Balkowiec A, et al. The influence of the melt-pouring temperature and inoculant content on the macro and microstructure of the IN713C Ni-based superalloy [J]. JOM, 2016, 68: 185
32 Du B N, Yang J X, Cui C Y, et al. Effects of grain refinement on the micro-structure and tensile behavior of K417G superalloy [J]. Mater. Sci. Eng., 2015, A623: 59
33 Soula A, Renollet Y, Boivin D, et al. Analysis of high-temperature creep deformation in a polycrystalline nickel-base superalloy [J]. Mater. Sci. Eng., 2009, A510-511: 301
34 Tewo R K, Rutto H L, Focke W W, et al. Investment casting pattern material based on paraffin wax fortified with EVA and filled with PMMA [J]. J. Appl. Polym. Sci., 2020, 137: 48774
35 Antonsson T, Fredriksson H. The effect of cooling rate on the solidification of INCONEL 718 [J]. Metall. Mater. Trans., 2005, 36B: 85
36 Khalifa W, Tsunekawa Y, Okumiya M. Effect of ultrasonic treatment on the Fe-intermetallic phases in ADC12 die cast alloy [J]. J. Mater. Process. Technol., 2010, 210: 2178
37 Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544 pmid: 23353630
38 Miller W S, Humphreys F J. Strengthening mechanisms in particulate metal matrix composites [J]. Scr. Metall. Mater., 1991, 25: 33
39 Nardone V C, Prewo K M. On the strength of discontinuous silicon carbide reinforced aluminum composites [J]. Scr. Metall. Mater., 1986, 20: 43
[1] GUAN Bang, WANG Donghong, MA Hongbo, SHU Da, DING Zhengyi, CUI Jiayu, SUN Baode. Key Technology and Application of Digital Twin Modeling for Deformation Control of Investment Casting[J]. 金属学报, 2024, 60(4): 548-558.
[2] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[3] SUN Baode, WANG Jun, KANG Maodong, WANG Donghong, DONG Anping, WANG Fei, GAO Haiyan, WANG Guoxiang, DU Dafan. Investment Casting Technology and Development Trend of Superalloy Ultra Limit Components[J]. 金属学报, 2022, 58(4): 412-427.
[4] ZHENG Qiuju, YE Zhongfei, JIANG Hongxiang, LU Ming, ZHANG Lili, ZHAO Jiuzhou. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys[J]. 金属学报, 2021, 57(1): 103-110.
[5] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[6] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[7] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[8] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[9] Wenying GUO,Xiaoqiang HU,Xiaoping MA,Dianzhong LI. EFFECT OF TiN PRECIPITATES ON SOLIDIFICATION MICROSTRUCTURE OF MEDIUM CARBON Cr-Mo WEAR RESISTANT STEEL[J]. 金属学报, 2016, 52(7): 769-777.
[10] Qian SUN,Hongxiang JIANG,Jiuzhou ZHAO. EFFECT OF MICRO-ALLOYING ELEMENT Bi ON SOLIDIFICATION AND MICROSTRUCTURE OF Al-Pb ALLOY[J]. 金属学报, 2016, 52(4): 497-504.
[11] Heng SHAO,Yan LI,Hai NAN,Qingyan XU. RESEARCH ON THE INTERFACIAL HEAT TRANSFER COEFFECIENT BETWEEN CASTING AND CERAMIC SHELL IN INVESTMENT CASTING PROCESS OF Ti6Al4V ALLOY[J]. 金属学报, 2015, 51(8): 976-984.
[12] ZHOU Xuefeng, FANG Feng, TU Yiyou, JIANG Jianqing, XU Huixia, ZHU Wanglong. EFFECT OF ALUMINUM ON THE SOLIDIFICATION MICROSTRUCTURE OF M2 HIGH SPEED STEEL[J]. 金属学报, 2014, 50(7): 769-776.
[13] ZHAO Jiuzhou, LI Lu, ZHANG Xianfei. DEVELOPMENT OF CELLULAR AUTOMATON MODELS AND SIMULATION METHODS FOR SOLIDIFICATION OF ALLOYS[J]. 金属学报, 2014, 50(6): 641-651.
[14] JIA Peng, WANG Engang, LU Hui, HE Jicheng. EFFECT OF ELECTROMAGNETIC FIELD ON MICRO-STRUCTURE AND MECHANICAL PROPERTY FOR INCONEL 625 SUPERALLOY[J]. 金属学报, 2013, 49(12): 1573-1580.
[15] CHEN Yuyong, JIA Yi, XIAO Shulong, TIAN Jing, XU Lijuan. REVIEW OF THE INVESTMENT CASTING OF TiAl-BASED INTERMETALLIC ALLOYS[J]. 金属学报, 2013, 49(11): 1281-1285.
No Suggested Reading articles found!