Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (4): 548-558    DOI: 10.11900/0412.1961.2022.00263
Research paper Current Issue | Archive | Adv Search |
Key Technology and Application of Digital Twin Modeling for Deformation Control of Investment Casting
GUAN Bang1, WANG Donghong1,2(), MA Hongbo3, SHU Da1,2(), DING Zhengyi1, CUI Jiayu1, SUN Baode1,2
1 Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
3 School of Electro-Mechanical Engineering, Xidian University, Xi'an 710126, China
Cite this article: 

GUAN Bang, WANG Donghong, MA Hongbo, SHU Da, DING Zhengyi, CUI Jiayu, SUN Baode. Key Technology and Application of Digital Twin Modeling for Deformation Control of Investment Casting. Acta Metall Sin, 2024, 60(4): 548-558.

Download:  HTML  PDF(2811KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Investment casting processes are controlled separately for its complex casting system, resulting in the dimensional out of tolerance. A calculation method for node displacement transfer is proposed based on the node normal vector and the nearest neighbor points in investment casting; the relationship between injection parameters, dimensional deviation in injected wax pattern, and casting solidification is studied, which provides a data model for digital twin. The digital twin is applied to the antideformation design and process optimization under a multiprocess for ring-to-ring casting. In the design stage, the geometric model of the mold cavity is designed via reverse deformation, and the error between the simulation results of the casting after the antideformation design and the target geometric is < 0.04 mm. In the casting, the optimal control of the subsequent process is performed according to the dimensional deviation of the previous process.

Key words:  investment casting      dimension transfer      antideformation design      digital twin      intelligent casting     
Received:  31 May 2022     
ZTFLH:  TG146.3  
Fund: National Key Research and Development Program of China(2022YFB3706800);National Key Research and Development Program of China(2020YFB1710100);National Science and Technology Major Project of China(2017-Ⅶ-0008-0102);National Science and Technology Major Project of China(J2019-VI-0004-0117);National Natural Science Foundation of China(51821001);National Natural Science Foundation of China(52090042);Zhejiang Provincial Key Research and Development Program of China(2020C01056);Zhejiang Provincial Key Research and Development Program of China(2021C01157);Zhejiang Provincial Key Research and Development Program of China(2022C01147)
Corresponding Authors:  WANG Donghong, associate professor, Tel:(021)54748974, E-mail: wangdh2009@sjtu.edu.cn;
SHU Da, professor, Tel: (021)54748974, E-mail: dshu@sjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00263     OR     https://www.ams.org.cn/EN/Y2024/V60/I4/548

Fig.1  Digital twin modeling and simulation framework for casting dimensions
Fig.2  Calculation diagram of node displacement deviation (Surface 1 is original geometry, surface 2 is wax pattern deformation, and surface 3 is casting deformation; d is the node displacement of wax mold, and d1 is the node displacement of casting)
Fig.3  Node displacement error divided by 1 mm grid
Boundary

X1

MPa

X2

cm3·s-1

X3

oC

X4

oC

X5

oC

X6

W·m-2·oC-1

Upper0.53062145090050
Lower53007016001100200
Table 1  Design variables and its range
Fig.4  Casting geometric model
(a) schematic view of a typical casting (unit: mm) (b) model of STL format
Fig.5  Deformation simulation results of wax pattern (a) and casting (b)
Fig.6  Displacement fields (a1-c1) and statistics histograms (a2-c2) of wax pattern (a1, a2), casting (b1, b2), and total deformation between CAD and casting (c1, c2) showing displacement transfer process
Fig.7  All nodes of inner ring
Fig.8  Dimensional deviations of wax pattern (a) and casting (b) at different heights
Fig.9  Node displacements of casting after iterative design of initial geometric
(a) first iteration (b) second iteration (c) third iteration (d) fourth iteration
Fig.10  Dimensional deviations of different heights between casting and wax pattern
Fig.11  Point clouds of CAD model (a), wax pattern (b), and casting (c)
Fig.12  Displacement fields (a1-c1) and statistical histograms (a2-c2) between different geometric models
(a1, a2) wax pattern point cloud with CAD model
(b1, b2) wax pattern point cloud with casting point cloud
(c1, c2) casting point cloud with CAD model
Fig.13  Curves of average displacement vector component with blade height
(a) Y direction (b) Z direction
1 Sun B D, Wang J, Shu D. Precision Forming Technology of Large Superalloy Castings for Aircraft Engines[M]. Singapore: Springer, 2021: 1
2 Galles D, Beckermann C. Simulation of distortions and pattern allowances for a production steel casting[A]. Proceedings of the 69th SFSA Technical and Operating Conference[C]. Steel Founders' Society of America, Chicago, IL, 2015
3 Motoyama Y, Takahashi H, Inoue Y, et al. Development of a device for dynamical measurement of the load on casting and the contraction of the casting in a sand mold during cooling[J]. J. Mater. Process. Technol., 2012, 212: 1399
doi: 10.1016/j.jmatprotec.2012.02.007
4 Galles D, Beckermann C. In situ measurement and prediction of stresses and strains during casting of steel[J]. Metall. Mater. Trans., 2016, 47A: 811
5 Pradyumna R, Sridhar S, Satyanarayana A, et al. Wax patterns for integrally cast rotors/stators of aeroengine gas turbines[J]. Mater. Today: Proc., 2015, 2: 1714
6 Duan C P, Tong J, Lu L, et al. Improving the performance of 3D shape measurement of moving objects by fringe projection and data fusion[J]. IEEE Access, 2021, 9: 34682
doi: 10.1109/Access.6287639
7 Wang R X, Law A C, Garcia D, et al. Development of structured light 3D-scanner with high spatial resolution and its applications for additive manufacturing quality assurance[J]. Int. J. Adv. Manuf. Technol., 2021, 117: 845
doi: 10.1007/s00170-021-07780-2
8 Haleem A, Javaid M, Goyal A, et al. Redesign of car body by reverse engineering technique using steinbichler 3D scanner and projet 3D printer[J]. J. Ind. Integr. Manag., 2022, 7: 171
9 He W T, Zhong K, Li Z W, et al. Accurate calibration method for blade 3D shape metrology system integrated by fringe projection profilometry and conoscopic holography[J]. Opt. Lasers Eng., 2018, 110: 253
doi: 10.1016/j.optlaseng.2018.06.012
10 Zhao D Y, Yang Z H, Yang G X, et al. Dimension control of X-type heavy duty gas turbine solid blade in investment casting process[J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 1265
赵代银, 杨照宏, 杨功显 等. 某型重型燃机实心动叶片的精密铸造过程尺寸控制[J]. 特种铸造及有色合金, 2020, 40: 1265
doi: 10.15980/j.tzzz.2020.11.020
11 Galles D, Lu J, Beckermann C. Determination of pattern allowances for a steel casting using an inverse elastoplastic deformation analysis[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 529: 012077
12 Galles D, Lu J, Beckermann C. Determination of pattern allowances for steel castings using the finite element inverse deformation analysis[J]. Int. J. Cast Met. Res., 2019, 32: 123
doi: 10.1080/13640461.2018.1558562
13 Dong Y W, Zhang D H, Bu K, et al. Geometric parameter-based optimization of the die profile for the investment casting of aerofoil-shaped turbine blades[J]. Int. J. Adv. Manuf. Technol., 2011, 57: 1245
doi: 10.1007/s00170-011-3681-z
14 Zhang D H, Jiang R S, Li J L, et al. Cavity optimization for investment casting die of turbine blade based on reverse engineering[J]. Int. J. Adv. Manuf. Technol., 2010, 48: 839
doi: 10.1007/s00170-009-2343-x
15 Bu K, Wang H, Zhou T, et al. Method of virtual mold-repair for hollow turbine blades[J]. Acta Aeronaut. Astronaut. Sin., 2011, 32: 538
卜 昆, 王 虹, 周 桐 等. 精铸空心涡轮叶片模具虚拟修模方法[J]. 航空学报, 2011, 32: 538
16 Bu K, Zhang Y L, Yu Q, et al. Research development on shrinkage fraction distribution of investment castings[J]. Aeronaut. Manuf. Technol., 2019, 62(20): 37
卜 昆, 张雅莉, 于 茜 等. 精铸件收缩率分布规律研究进展[J]. 航空制造技术, 2019, 62(20): 37
17 Li L Z, Wang J C, Han Y Z, et al. Displacement transfer with the mesh deformation method in multidisciplinary optimization of turbine blades[J]. J. Aerosp. Power, 2007, 22: 2101
李立州, 王婧超, 韩永志 等. 基于网格变形技术的涡轮叶片变形传递[J]. 航空动力学报, 2007, 22: 2101
18 Zhang M, Tao F, Huang B Q, et al. Digital twin data: Methods and key technologies[J]. Digital Twin, 2022, 1: 2
doi: 10.12688/digitaltwin
19 Yu J P, Wang D H, Li D Y, et al. Engineering computing and data-driven for gating system design in investment casting[J]. Int. J. Adv. Manuf. Technol., 2020, 111: 829
doi: 10.1007/s00170-020-06143-7
20 Ebrahimi A, Fritsching U, Heuser M, et al. A digital twin approach to predict and compensate distortion in a high pressure die casting (HPDC) process chain[J]. Procedia Manuf., 2020, 52: 144
21 Chen G Q, Zhu J L, Zhao Y H, et al. Digital twin modeling for temperature field during friction stir welding[J]. J. Manuf. Process., 2021, 64: 898
doi: 10.1016/j.jmapro.2021.01.042
22 Zhang M, Tao F, Huang B Q, et al. A physical model and data-driven hybrid prediction method towards quality assurance for composite components[J]. CIRP Ann., 2021, 70: 115
doi: 10.1016/j.cirp.2021.04.062
23 Tao F, Liu W R, Zhang M, et al. Five-dimension digital twin model and its ten applications[J]. Comput. Integr. Manuf. Syst., 2019, 25: 1
doi: 10.13196/j.cims.2019.01.001
陶 飞, 刘蔚然, 张 萌 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25: 1
24 Wang D H, Dong A P, Zhu G L, et al. The propagation and accumulation of dimensional shrinkage for ring-to-ring structure in investment casting[J]. Int. J. Adv. Manuf. Technol., 2018, 96: 623
doi: 10.1007/s00170-018-1631-8
25 Yu J P, Wang D H, Li D Y, et al. Process parameter effects on solidification behavior of the superalloy during investment casting[J]. Mater. Manuf. Process., 2019, 34: 1726
doi: 10.1080/10426914.2019.1666989
26 Wang D H, Sun F, Shu D, et al. Data-driven design of cast nickel-based superalloy and precision forming of complex castings[J]. Acta Metall. Sin., 2022, 58: 89
doi: 10.11900/0412.1961.2021.00355
汪东红, 孙 锋, 疏 达 等. 数据驱动镍基铸造高温合金设计及复杂铸件精确成形[J]. 金属学报, 2022, 58: 89
doi: 10.11900/0412.1961.2021.00355
27 Rajendra Y D, Mehrotra S C, Kale K V, et al. Evaluation of partially overlapping 3D point cloud's registration by using ICP variant and CloudCompare[J]. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 2014, XL-8: 891
28 Chen G D, Han X, Liu G P. A multi-objective optimization method based on the approximate model manaement[J]. Eng. Mech., 2010, 27(5): 205
陈国栋, 韩 旭, 刘桂萍. 一种基于近似模型管理的多目标优化方法[J]. 工程力学, 2010, 27(5): 205
29 Zhao W, Fan F, Wang W. Non-linear partial least squares response surface method for structural reliability analysis[J]. Reliab. Eng. Syst. Saf., 2017, 161: 69
doi: 10.1016/j.ress.2017.01.004
[1] SUN Baode, WANG Jun, KANG Maodong, WANG Donghong, DONG Anping, WANG Fei, GAO Haiyan, WANG Guoxiang, DU Dafan. Investment Casting Technology and Development Trend of Superalloy Ultra Limit Components[J]. 金属学报, 2022, 58(4): 412-427.
[2] WANG Donghong, SUN Feng, SHU Da, CHEN Jingyang, XIAO Chengbo, SUN Baode. Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings[J]. 金属学报, 2022, 58(1): 89-102.
[3] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[4] Heng SHAO,Yan LI,Hai NAN,Qingyan XU. RESEARCH ON THE INTERFACIAL HEAT TRANSFER COEFFECIENT BETWEEN CASTING AND CERAMIC SHELL IN INVESTMENT CASTING PROCESS OF Ti6Al4V ALLOY[J]. 金属学报, 2015, 51(8): 976-984.
[5] CHEN Yuyong, JIA Yi, XIAO Shulong, TIAN Jing, XU Lijuan. REVIEW OF THE INVESTMENT CASTING OF TiAl-BASED INTERMETALLIC ALLOYS[J]. 金属学报, 2013, 49(11): 1281-1285.
[6] . [J]. 金属学报, 2007, 43(10): 1113-1120 .
No Suggested Reading articles found!