Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (5): 639-649    DOI: 10.11900/0412.1961.2022.00267
Research paper Current Issue | Archive | Adv Search |
Effect of Pre-Oxidation Treatment on the Corrosion Resistance in Stagnant Liquid Pb-Bi Eutectic of 12Cr Ferritic/Martensitic Steel
PAN Xia1,2, ZHANG Yangpeng1,3(), DONG Zhihong1, CHEN Shenghu1,3, JIANG Haichang1,3, RONG Lijian1,3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

PAN Xia, ZHANG Yangpeng, DONG Zhihong, CHEN Shenghu, JIANG Haichang, RONG Lijian. Effect of Pre-Oxidation Treatment on the Corrosion Resistance in Stagnant Liquid Pb-Bi Eutectic of 12Cr Ferritic/Martensitic Steel. Acta Metall Sin, 2024, 60(5): 639-649.

Download:  HTML  PDF(3762KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Lead-cooled fast reactors using liquid lead or lead-bismuth eutectic (LBE) alloy coolants have attracted international attention due to their unique advantages in safety, economy, and sustainable development. The availability of suitable core materials is one of the key challenges restricting the development and application of the lead-cooled fast reactor technology. Ferritic/martensitic steel is one of the important candidates for nuclear reactor fuel cladding, but the dissolution of Cr and Ni occurs in it upon contact with high-temperature LBE, resulting in cladding failure. Adding Si can improve corrosion resistance, and based on this property, previous work developed a high-Si ferritic/martensitic steel for LBE alloy-cooled fast reactor. Recently, pre-oxidation treatment was proposed to further improve the corrosion performance of steel in contact with LBE. However, the structure of the oxide film formed after the pre-oxidation of 12Cr ferritic/martensitic steel, the effect on corrosion resistance, and the failure mechanism are not clear. In this study, a pre-oxidized film was formed on the steel surface and its structure was characterized. Steel corrosion experiments using oxygen-saturated LBE at 550oC were also performed to analyze the influence of pre-oxidation treatment on the LBE alloy coolant corrosion resistance of steel. The results demonstrated that the oxide films formed when steel is pre-oxidized at 720oC in 1%O2 + 99%N2 atmosphere for 1 h are mainly (Fe, Cr)2O3 and MnCr2O4 oxides. The oxide films can effectively prevent the outward diffusion of Fe in steel and the inward diffusion of O in LBE, thereby improving the corrosion resistance of steel to stagnant oxygen-saturated LBE alloy coolant at 550oC. However, due to the high diffusion rate of Mn and its high solubility in LBE alloys, the Mn in the pre-oxidized film will gradually diffuse and dissolve into the LBE alloy, rendering subsequently a part of the oxide film ineffective and forming a localized corrosion zone. After 1000 h of Pb-Bi corrosion, the local corrosion area on the alloy surface can reach 60%. This study revealed the microstructure, protective effect, and failure mechanism of the pre-oxidized film on the surface of high-Si ferritic/martensitic steel, and suggested research directions for further improving the effectiveness and stability of the pre-oxidized film.

Key words:  lead-bismuth eutectic cooled fast reactor      ferritic/martensitic steel      surface treatment      Pb-Bi corrosion      pre-oxidized film     
Received:  31 May 2022     
ZTFLH:  TG142.7  
Fund: National Natural Science Foundation of China(51871218);Doctoral Start-up Project of Liaoning Province Natural Science Foundation(2020-BS-006)
Corresponding Authors:  ZHANG Yangpeng, associate professor, Tel: (024)23971985, E-mail: ypzhang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00267     OR     https://www.ams.org.cn/EN/Y2024/V60/I5/639

Fig.1  Schematic of the high vacuum resistance furnace
Fig.2  Schematic of stagnant lead-bismuth eutectic (LBE) corrosion device
Fig.3  Low (a) and high (b) magnified SEM images of the pre-oxidized 12Cr ferritic/martensitic steel sample
Fig.4  XRD spectrum of the pre-oxidized 12Cr ferritic/martensitic steel sample
Fig.5  Cross-sectional SEM image and EDS mappings of the pre-oxidized 12Cr ferritic/martensitic steel sample
Fig.6  Cross-sectional SEM-BSE images of 12Cr ferritic/martensitic steel samples without (a, b) and with (c, d) pre-oxidation treatment after exposure for 500 h (a, c) and 1000 h (b, d) to stagnant oxygen-saturated LBE at 550oC (Insets in Figs.6a and c show the high magnified images of oxide scale zone. IOZ—internal oxidation zone)
Fig.7  Cross-sectional SEM image and corresponding line scanning of 12Cr ferritic/martensitic steel sample without pre-oxidation treatment after exposure for 500 h to stagnant oxygen-saturated LBE at 550oC
Fig.8  EPMA analyses of the cross section of the pre-oxidized 12Cr ferritic/martensitic steel sample after exposure for 1000 h to stagnant oxygen-saturated LBE at 550oC
Fig.9  SEM-BSE surface images of 12Cr ferritic/martensitic steel samples without (a) and with (b-d) pre-oxidation treatment after exposure for 500 h to stagnant oxygen-saturated LBE at 550oC (Inset in Fig.9a shows the EDS of the corrosion products)
Fig.10  Schematics of the corrosion mechanism of the pre-oxidized 12Cr ferritic/martensitic steel sample
(a) initial pre-oxidized film
(b, c) pre-oxidized film is being corroded
(d) a localized corrosion zone is formed
1 Yvon P. Structural Materials for Generation IV Nuclear Reactors[M]. Amsterdam: Woodhead Publishing, 2017: 651
2 OECD/NEA Nuclear Science Committee, translated by Rong L J, Zhang Y T, Lu S P, et al. Handbook on Lead-Bismuth Eutectic Alloy and Lead: Properties, Materials Compatibility, Thermalhydraulics and Technologies[M]. Beijing: Science Press, 2007: 3
OECD/NEA Nuclear Science Committee著, 戎利建, 张玉妥, 陆善平等译. 铅与铅铋共晶合金手册——性能、材料相容性、热工水力学和技术[M]. 北京: 科学出版社, 2007: 3
3 Alemberti A, Smirnov V, Smith C F, et al. Overview of lead-cooled fast reactor activities[J]. Prog. Nucl. Energy, 2014, 77: 300
doi: 10.1016/j.pnucene.2013.11.011
4 Alemberti A. The lead fast reactor: An opportunity for the future?[J]. Engineering, 2016, 2: 59
doi: 10.1016/J.ENG.2016.01.022
5 Tian S J, Zhang J W. Corrosion behavior of 316L and T91 steels in stagnant lead-bismuth eutectic at 550oC[J]. J. Univ. Sci. Technol. China, 2015, 45: 751
田书建, 张建武. 316L和T91不锈钢在550℃静态铅铋合金中的腐蚀行为[J]. 中国科学技术大学学报, 2015, 45: 751
6 Eliseeva O I, Tsisar V P. Effect of temperature on the interaction of ÉP823 steel with lead melts saturated with oxygen[J]. Mater. Sci., 2007, 43: 230
doi: 10.1007/s11003-007-0026-z
7 Yang K, Yan W, Wang Z G, et al. Development of a novel structural material (SIMP steel) for nuclear equipment with balanced resistances to high temperature, radiation and liquid metal corrosion[J]. Acta Metall. Sin., 2016, 52: 1207
杨 柯, 严 伟, 王志光 等. 核用新型耐高温、抗辐照、耐液态金属腐蚀结构材料——SIMP钢的研究进展[J]. 金属学报, 2016, 52: 1207
8 Lu Y H, Song Y Y, Chen S H, et al. Effects of Al and Si on mechanical properties and corrosion resistance in liquid Pb-Bi eutectic of 9Cr2WVTa steel[J]. Acta Metall. Sin., 2016, 52: 298
doi: 10.11900/0412.1961.2015.00348
鲁艳红, 宋元元, 陈胜虎 等. Al和Si对9Cr2WVTa钢力学性能及耐Pb-Bi腐蚀性能的影响[J]. 金属学报, 2016, 52: 298
doi: 10.11900/0412.1961.2015.00348
9 Yang H Y, Zhang Y P, Xu H T, et al. A kind of high-silicon and high-chromium ferritic/martensitic heat-resistant steel resistant to liquid lead or lead-bismuth corrosion and preparation method thereof[P]. Chin Pat, 202110724403.0, 2021
杨红义, 张洋鹏, 徐海涛 等. 一种耐液态铅或铅铋腐蚀高硅高铬铁素体/马氏体耐热钢及其制备方法[P]. 中国专利, 202110724403.0, 2021
10 Chen S H, Rong L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel[J]. J. Nucl. Mater., 2015, 459: 13
doi: 10.1016/j.jnucmat.2015.01.004
11 Wang J, Lu S P, Rong L J, et al. Effect of silicon contents on the microstructures and mechanical properties of heat affected zones for 9Cr2WVTa steels[J]. J. Nucl. Mater., 2016, 470: 1
doi: 10.1016/j.jnucmat.2015.11.055
12 Yaskiv O I, Kukhar I S, Fedirko V M. Effect of preliminary diffusion oxidation on mechanical properties of ferritic steel in oxygen-containing lead[J]. Fusion Eng. Des., 2015, 101: 134
doi: 10.1016/j.fusengdes.2015.10.006
13 Lillard R S, Valot C, Hill M A, et al. Influence of preoxidation on the corrosion of steels in liquid lead-bismuth eutectic[J]. Corrosion, 2004, 60: 1031
doi: 10.5006/1.3299217
14 Xu S, Long F, Persaud S Y, et al. Oxidation behavior of 9Cr-4.5Al ODS steel in 600oC supercritical water and the effect of pre-oxidation[J]. Corros. Sci., 2020, 165: 108380
doi: 10.1016/j.corsci.2019.108380
15 Yas'kiv O I, Eliseeva O I, Kharkhalis A Y, et al. Influence of preliminary oxidation on the corrosion resistance of ferritic-martensitic steels in lead melts[J]. Mater. Sci., 2016, 51: 854
16 Abe F, Kutsumi H, Haruyama H, et al. Improvement of oxidation resistance of 9 mass% chromium steel for advanced-ultra supercritical power plant boilers by pre-oxidation treatment[J]. Corros. Sci., 2017, 114: 1
doi: 10.1016/j.corsci.2016.10.008
17 Lehmusto J, Lindberg D, Yrjas P, et al. The effect of temperature on the formation of oxide scales regarding commercial superheater steels[J]. Oxid. Met., 2018, 89: 251
doi: 10.1007/s11085-017-9785-6
18 Deshmukh P R, Sohn Y, Shin W G. Electrochemical performance of facile developed aqueous asymmetric (Fe,Cr)2O3//MnO2 supercapacitor[J]. Electrochim. Acta, 2018, 285: 381
doi: 10.1016/j.electacta.2018.07.197
19 Cheng X W, Jiang Z Y, Wei D B, et al. Characteristics of oxide scale formed on ferritic stainless steels in simulated reheating atmosphere[J]. Surf. Coat. Technol., 2014, 258: 257
doi: 10.1016/j.surfcoat.2014.09.019
20 Ellingham H J T. Reducibility of oxides and sulphides in metallurgical processes[J]. J. Soc. Chem. Ind., 1944, 63: 125
doi: 10.1002/jctb.v63:5
21 Jin X J, Chen S H, Rong L J. Effects of Mn on the mechanical properties and high temperature oxidation of 9Cr2WVTa steel[J]. J. Nucl. Mater., 2017, 494: 103
doi: 10.1016/j.jnucmat.2017.07.024
22 Saeki I, Konno H, Furuichi R, et al. The effect of the oxidation atmosphere on the initial oxidation of type 430 stainless steel at 1273 K[J]. Corros. Sci., 1998, 40: 191
doi: 10.1016/S0010-938X(97)00113-3
23 Bowen A W, Leak G M. Diffusion in bcc iron base alloys[J]. Metall. Trans., 1970, 1: 2767
24 Kirkaldy J S, Smith P N, Sharma R C. Diffusion of manganese in paramagnetic BCC iron[J]. Metall. Mater. Trans., 1973, 4: 624
25 Lobnig R E, Schmidt H P, Hennesen K, et al. Diffusion of cations in chromia layers grown on iron-base alloys[J]. Oxid. Met., 1992, 37: 81
doi: 10.1007/BF00665632
26 Lambrinou K, Koch V, Coen G, et al. Corrosion scales on various steels after exposure to liquid lead-bismuth eutectic[J]. J. Nucl. Mater., 2014, 450: 244
doi: 10.1016/j.jnucmat.2013.09.034
27 Shi Q Q, Liu J, Luan H, et al. Oxidation behavior of ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600oC[J]. J. Nucl. Mater., 2015, 457: 135
doi: 10.1016/j.jnucmat.2014.11.018
28 Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I)[J]. Corros. Sci., 2008, 50: 2523
doi: 10.1016/j.corsci.2008.06.050
29 Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470oC (Part II)[J]. Corros. Sci., 2008, 50: 2537
doi: 10.1016/j.corsci.2008.06.051
30 Martinelli L, Balbaud-Célérier F, Picard G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III)[J]. Corros. Sci., 2008, 50: 2549
doi: 10.1016/j.corsci.2008.06.049
31 Xiao J, Gong X, Xiang C Y, et al. A refined oxidation mechanism proposed for ferritic-martensitic steels exposed to oxygen-saturated liquid lead-bismuth eutectic at 400oC for 500 h[J]. J. Nucl. Mater., 2021, 549: 152852
doi: 10.1016/j.jnucmat.2021.152852
32 Huang J H. Diffusion in Metals and Alloys[M]. Beijing: Metallurgical Industry Press, 1996: 27
黄继华. 金属及合金中的扩散[M]. 北京: 冶金工业出版社, 1996: 27
33 Parakh A, Vaidya M, Kumar N, et al. Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy[J]. J. Alloys Compd., 2021, 863: 158056
doi: 10.1016/j.jallcom.2020.158056
34 Yu Z, Lu J T, Chen M H, et al. Effect of pre-oxidation on hot corrosion resistance of HR3C stainless steel in sulfate salt with or without Fe2O3 [J]. Corros. Sci., 2021, 192: 109789
doi: 10.1016/j.corsci.2021.109789
35 Föhl H. Ionic crystals[EB/OL]. http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_2/basics/b2_1_6.html
36 International Atomic Energy Agency. Comparative assessment of thermophysical and thermohydraulic characteristics of lead, lead-bismuth and sodium coolants for fast reactors[R]. Vienna: IAEA, 2002: 24
[1] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[2] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[3] CHEN Shenghu, RONG Lijian. Oxide Scale Formation on Ultrafine-Grained Ferritic-Martensitic Steel During Pre-Oxidation and Its Effect on the Corrosion Performance in Stagnant Liquid Pb-Bi Eutectic[J]. 金属学报, 2021, 57(8): 989-999.
[4] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[5] Yanhong LU, Yuanyuan SONG, Shenghu CHEN, Lijian Rong. EFFECTS OF Al AND Si ON MECHANICAL PROPERTIES AND CORROSION RESISTANCE IN LIQUID Pb-Bi EUTECTIC OF 9Cr2WVTa STEEL[J]. 金属学报, 2016, 52(3): 298-306.
[6] CHEN Shu, ZHAO Jiuzhou. SOLIDIFICATION OF MONOTECTIC ALLOY UNDER LASER SURFACE TREATMENT CONDITIONS[J]. 金属学报, 2013, 49(5): 537-543.
[7] TONG Zhenfeng DAI Yong YANG Wen YANG Qifa. EFFECTS OF RADIATION AND He ON MICROSTRUCTURES OF LOW ACTIVE FERRITIC/MARTENSITIC STEEL F82H[J]. 金属学报, 2011, 47(7): 965-970.
[8] TANG Zhaolin; WANG Fuhui; WU Weitao(State Key Laboratory for Corrosion and Protection; Institute of Corrosion and Protection of Metals; The Chinese Academy of Sciences; Shenyang 110015)Coerespondent: TANG Zhaolin; Tel: (024)23915911; Fax: (024)23894149;E-mail: zltang@icpm.syb.ac.cn. EFFECT OF SURFACE TREATMENT BY PHOSPHORIC ACID ON OXIDATION RESISTANCE OF TiAl INTERMETALLICS[J]. 金属学报, 1998, 34(10): 1084-1088.
[9] ZHU Zuming; SHI Nanlin; WANG Zhongguang; LIANG Yong (State Key Laborato ry of Fatigue and Fracture for Materials; Institute of Metal Research; Chinese Acad emy of Sciences; Shenyang 110015). EFFECT OF SURFACE TREATMENTS OF SiC FIBER ON THE INTERFACE STRENGTH BETWEEN SiC FIBER AND AI MATRIX[J]. 金属学报, 1996, 32(9): 1003-1008.
No Suggested Reading articles found!