|
|
Effect of Multi-Pass Compression Deformation on Microstructure Evolution of AZ80 Magnesium Alloy |
LI Zhenliang( ), ZHANG Xinlei, TIAN Dongkuo |
School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China |
|
Cite this article:
LI Zhenliang, ZHANG Xinlei, TIAN Dongkuo. Effect of Multi-Pass Compression Deformation on Microstructure Evolution of AZ80 Magnesium Alloy. Acta Metall Sin, 2024, 60(3): 311-322.
|
Abstract Magnesium alloy has a hexagonal close-packed crystal structure, and its plasticity is poor at room temperature. This is primarily due to the small number of movable slip systems at room temperature, which is prone to deformation texture. Therefore, temperature and compression deformation play an important role in the regulation of plastic deformation. In this work, AZ80 magnesium alloy was subjected to multi-pass compression deformation at a constant temperature and step-down temperature. The microstructure of the AZ80 magnesium alloy with different deformation degrees and deformation paths was observed and analyzed using EBSD. In addition, the grain boundary, dislocation density, Schmid factor, and polar figure evolution of the AZ80 magnesium alloy during hot compression deformation were primarily studied. Results show that the comprehensive effect of grain size, twinning, and texture on the plastic regulation of AZ80 magnesium alloy is better than that of single dynamic recrystallization. Moreover, three-time constant-temperature deformation (ε = 0.6) promotes dynamic recrystallization, whereas three-time step-cooling deformation (ε = 0.6) promotes plastic deformation. More 86°{102} <110> tensile twins are produced by reduced grain orientation difference, increased number of low-angle grain boundaries, and increased geometrically necessary dislocation density, which are important factors affecting the plastic regulation of three-time step-cooling deformation (ε = 0.6).
|
Received: 10 January 2022
|
|
Fund: National Natural Science Foundation of China(51364032);Inner Mongolia Natural Science Foundation(2022MS05028) |
Corresponding Authors:
LI Zhenliang, professor, Tel: (0472)5951572, E-mail: lizhenliang@imust.edu.cn
|
1 |
Yang Z, Li J P, Zhang J X, et al. Review on research and development of magnesium alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2008, 21: 313
doi: 10.1016/S1006-7191(08)60054-X
|
2 |
Cai Y, Sun C Y, Wan L, et al. Study on the dynamic recrystallization softening behavior of AZ80 magnesium alloy [J]. Acta Metall. Sin., 2016, 52: 1123
doi: 10.11900/0412.1961.2016.00051
|
|
蔡 贇, 孙朝阳, 万 李 等. AZ80镁合金动态再结晶软化行为研究 [J]. 金属学报, 2016, 52: 1123
|
3 |
Yasi J A, Hector Jr L G, Trinkle D R. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties [J]. Acta Mater., 2010, 58: 5704
doi: 10.1016/j.actamat.2010.06.045
|
4 |
Beer A G, Barnett M R. The post-deformation recrystallization behaviour of magnesium alloy Mg-3Al-1Zn [J]. Scr. Mater., 2009, 61: 1097
doi: 10.1016/j.scriptamat.2009.09.002
|
5 |
Guo Q, Yan H G, Chen Z H, et al. Grain refinement in as-cast AZ80 Mg alloy under large strain deformation [J]. Mater. Charact., 2007, 58: 162
doi: 10.1016/j.matchar.2006.04.013
|
6 |
Li J Q, Liu J, Cui Z S. Microstructures and mechanical properties of AZ61 magnesium alloy after isothermal multidirectional forging with increasing strain rate [J]. Mater. Sci. Eng., 2015, A643: 32
|
7 |
Zhao Z D, Chen Q, Hu C K, et al. Microstructure and mechanical properties of SPD-processed an as-cast AZ91D+Y magnesium alloy by equal channel angular extrusion and multi-axial forging [J]. Mater. Des., 2009, 30: 4557
doi: 10.1016/j.matdes.2009.04.023
|
8 |
Nie X, Dong S, Wang F H, et al. Effects of holding time and Zener-Hollomon parameters on deformation behavior of cast Mg-8Gd-3Y alloy during double-pass hot compression [J]. J. Mater. Sci. Technol., 2018, 34: 2035
doi: 10.1016/j.jmst.2018.03.001
|
9 |
Zhang J L, Xie H, Ma Y, et al. Grain growth model of ultra-fine grain AZ80 magnesium alloy multi-directionally forged during the isothermal heating process [J]. Mater. Sci., 2019, 25: 1392
doi: 10.1007/BF00585455
|
10 |
Deng L P, Cui K X, Wang B S, et al. Microstructure and texture evolution of AZ31 Mg alloy processed by multi-pass compressing under room temperature [J]. Acta Metall. Sin., 2019, 55: 976
|
|
邓丽萍, 崔凯旋, 汪炳叔 等. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究 [J]. 金属学报, 2019, 55: 976
doi: 10.11900/0412.1961.2019.00050
|
11 |
Song G S, Zhao Y Y, Zhang S H, et al. Effect of texture on deformation mechanism of AZ31 Magnesium alloy warm compression [J]. Chin. J. Nonferrous Met., 2018, 28: 2206
|
|
宋广胜, 赵原野, 张士宏 等. 织构对AZ31镁合金温热压缩变形机制影响 [J]. 中国有色金属学报, 2018, 28: 2206
|
12 |
Tang L Q, Jiang F L, Teng J, et al. Strain path dependent evolutions of microstructure and texture in AZ80 magnesium alloy during hot deformation [J]. J. Alloys Compd., 2019, 806: 292
doi: 10.1016/j.jallcom.2019.07.262
|
13 |
Zhou X J, Zhang J, Chen X M, et al. Fabrication of high-strength AZ80 alloys via multidirectional forging in air with no need of ageing treatment [J]. J. Alloys Compd., 2019, 787: 551
doi: 10.1016/j.jallcom.2019.02.133
|
14 |
Khosravani A, Scott J, Miles M P, et al. Twinning in magnesium alloy AZ31B under different strain paths at moderately elevated temperatures [J]. Int. J. Plast., 2013, 45: 160
doi: 10.1016/j.ijplas.2013.01.009
|
15 |
Yan Z F, Wang D H, He X L, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect [J]. Mater. Sci. Eng., 2018, A723: 212
|
16 |
Quan G Z, Shi Y, Wang Y X, et al. Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stress-strain data [J]. Mater. Sci. Eng., 2011, A528: 8051
|
17 |
Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
|
18 |
Xie C, Wang Y N, Fang Q H, et al. Effects of cooperative grain boundary sliding and migration on the particle cracking of fine-grained magnesium alloys [J]. J. Alloys Compd., 2017, 704: 641
doi: 10.1016/j.jallcom.2017.02.057
|
19 |
Khosravani A, Fullwood D T, Adams B L, et al. Nucleation and propagation of {10 1 ¯ 2} twins in AZ31 magnesium alloy [J]. Acta Mater., 2015, 100: 202
doi: 10.1016/j.actamat.2015.08.024
|
20 |
Sun D K, Chang C P, Kao P W. Microstructural aspects of grain boundary bulge in a dynamically recrystallized Mg-Al-Zn alloy [J]. Metall. Mater. Trans., 2010, 41A: 1864
|
21 |
Liu Z G, Li P J, Xiong L T, et al. High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy [J] Mater. Sci. Eng., 2017, A680: 259
|
22 |
Rupert T J, Gianola D S, Gan Y, et al. Experimental observations of stress-driven grain boundary migration [J]. Science, 2009, 326: 1686
doi: 10.1126/science.1178226
pmid: 20019286
|
23 |
Yu D L, Zhang D F, Luo Y X, et al. Microstructure evolution during high cycle fatigue in Mg-6Zn-1Mn alloy [J]. Mater. Sci. Eng., 2016, A658: 108
|
24 |
Yang P, Hu Y S, Cui F E. Texture investigation on the deformation mechanisms in magnesium alloy AZ31 deformed at high temperatures [J]. Chin. J. Mater. Res., 2004, 18: 52
|
|
杨 平, 胡轶嵩, 崔凤娥. 镁合金AZ31高温形变机制的织构分析 [J]. 材料研究学报, 2004, 18: 52
|
25 |
Chen Z H. Wrought Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2005: 329
|
|
陈振华. 变形镁合金 [M]. 北京: 化学工业出版社, 2005: 329
|
26 |
Li Z L, Tian D K. Microstructure evolution of AZ80 magnesium alloy under different states [J]. Rare Met. Mater. Eng., 2021, 50: 639
|
|
李振亮, 田董扩. 不同状态条件下AZ80镁合金微观组织演化 [J]. 稀有金属材料与工程, 2021, 50: 639
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|