|
|
Application of Machine Learning Force Fields for Modeling Ferroelectric Materials |
LIU Shi1( ), HUANG Jiawei2, WU Jing1 |
1 Department of Physics, School of Science, Westlake University, Hangzhou 310030, China 2 Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China |
|
Cite this article:
LIU Shi, HUANG Jiawei, WU Jing. Application of Machine Learning Force Fields for Modeling Ferroelectric Materials. Acta Metall Sin, 2024, 60(10): 1312-1328.
|
Abstract Ferroelectric materials, which are characterized by tunable spontaneous polarization, show remarkable application potential for nonvolatile information storage; however they present various challenges. The performance of these materials is strongly influenced by their dynamic polarization behavior under multiple external fields. Due to the limited precision of experimental observations, precise atomic-level material simulations are crucial. Although molecular dynamics (MD) offers an ideal method for investigating material dynamics over a wide spatiotemporal range, its application to new materials is often limited by challenges such as low accuracy, complex development, and limited portability of conventional classical force fields. Advances in machine learning have provided new possibilities for developing force fields. Among different machine learning potentials, deep potential (DP) based on deep neural networks stands out. DP offers accuracy comparable to that of density functional theory while providing computational efficiency similar to that of conventional classical force fields. This review primarily focused on the development and application of DP in ferroelectric materials, specifically examining the phase transition mechanisms and polarization reversal processes at the atomic scale. Considerable efforts have been made to develop and evaluate DP for crucial ferroelectric materials such as hafnium dioxide (HfO2) and classic perovskite ferroelectric materials. Furthermore, this review explores the high oxygen-ion migration kinetics in HfO2 using DP and investigates the flexoelectricity induced by polar domain boundaries and the bulk photovoltaic effects in strontium titanate. By highlighting the use of DP molecular dynamics approaches in ferroelectric materials, this review emphasizes the role of machine learning approaches in optimizing and accelerating material simulations to facilitate further breakthroughs and discoveries.
|
Received: 23 May 2024
|
|
Fund: National Natural Science Foundation of China(92370104) |
Corresponding Authors:
LIU Shi, professor, Tel: (0571)85273989, E-mail: liushi@westlake.edu.cn
|
1 |
Ielmini D, Wong H S P. In-memory computing with resistive switching devices [J]. Nat. Electron., 2018, 1: 333
|
2 |
Salahuddin S, Ni K, Datta S. The era of hyper-scaling in electronics [J]. Nat. Electron., 2018, 1: 442
|
3 |
Aggarwal S, Dhote A M, Li H, et al. Conducting barriers for vertical integration of ferroelectric capacitors on Si [J]. Appl. Phys. Lett., 1999, 74: 230
|
4 |
Slack J R, Burfoot J C. Flash evaporation of ferroelectric thin films [J]. Thin Solid Films, 1970, 6: 233
|
5 |
Mcadams H P, Acklin R, Blake T, et al. A 64-mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process [J]. IEEE J. Solid-State Circuits, 2004, 39: 667
|
6 |
Batra I P, Wurfel P, Silverman B D. Phase transition, stability, and depolarization field in ferroelectric thin films [J]. Phys. Rev., 1973, 8B: 3257
|
7 |
Wurfel P, Batra I P. Depolarization-field-induced instability in thin ferroelectric films—Experiment and theory [J]. Phys. Rev., 1973, 8B: 5126
|
8 |
Schenk T, Schroeder U, Pešić M, et al. Electric field cycling behavior of ferroelectric hafnium oxide [J]. ACS Appl. Mater. Interfaces, 2014, 6: 19744
|
9 |
Megaw H D. Crystal structure of barium titanate [J]. Nature, 1945, 155: 484
|
10 |
Miyake S, Ueda R. On polymorphic change of BaTiO3 [J]. J. Phys. Soc. Jpn., 1946, 1: 32
|
11 |
von Hippel A, Breckenridge R G, Chesley F G, et al. High dielectric constant ceramics [J]. Ind. Eng. Chem., 1946, 38: 1097
|
12 |
Shirane G, Hoshino S. On the phase transition in lead titanate [J]. J. Phys. Soc. Jpn., 1951, 6: 265
|
13 |
Shirane G, Suzuki K, Takeda A. Phase transitions in solid solutions of PbZrO3 and PbTiO3 (II) X-ray study [J]. J. Phys. Soc. Jpn., 1952, 7: 12
|
14 |
Moreau J M, Michel C, Gerson R, et al. Ferroelectric BiFeO3 X-ray and neutron diffraction study [J]. J. Phys. Chem. Solids, 1971, 32: 1315
|
15 |
Jonker G H, van Santen J H. Properties of barium titanate in connection with its crystal structure [J]. Science, 1949, 109: 632
pmid: 17792404
|
16 |
Jeong M, Choi I W, Go E M, et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss [J]. Science, 2020, 369: 1615
doi: 10.1126/science.abb7167
pmid: 32973026
|
17 |
Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells [J]. Nature, 2021, 592: 381
|
18 |
Min H, Lee D Y, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes [J]. Nature, 2021, 598: 444
|
19 |
Liu Z, Qiu W D, Peng X M, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation [J]. Adv. Mater., 2021, 33: 2103268
|
20 |
Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J]. Nat. Photon., 2018, 12: 681
|
21 |
Kim J S, Heo J M, Park G S, et al. Ultra-bright, efficient and stable perovskite light-emitting diodes [J]. Nature, 2022, 611: 688
|
22 |
Dou L T, Yang Y, You J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity [J]. Nat. Commun., 2014, 5: 5404
doi: 10.1038/ncomms6404
pmid: 25410021
|
23 |
Deumel S, van Breemen A, Gelinck G, et al. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites [J]. Nat. Electron., 2021, 4: 681
|
24 |
Qin C J, Sandanayaka A S D, Zhao C Y, et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films [J]. Nature, 2020, 585: 53
|
25 |
Park Y, Kim S H, Lee D, et al. Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory [J]. Nat. Commun., 2021, 12: 3527
doi: 10.1038/s41467-021-23871-w
pmid: 34112776
|
26 |
Choi J, Han J S, Hong K, et al. Organic-inorganic hybrid halide perovskites for memories, transistors, and artificial synapses [J]. Adv. Mater., 2018, 30: 1704002
|
27 |
Fu R J, Zhao W Y, Wang L R, et al. Pressure-induced emission toward harvesting cold white light from warm white light [J]. Angew. Chem. Int. Ed., 2021, 60: 10082
doi: 10.1002/anie.202015395
pmid: 33759324
|
28 |
Schroeder U, Park M H, Mikolajick T, et al. The fundamentals and applications of ferroelectric HfO2 [J]. Nat. Rev. Mater., 2022, 7: 653
|
29 |
Böscke T S, Müller J, Bräuhaus D, et al. Ferroelectricity in hafnium oxide thin films [J]. Appl. Phys. Lett., 2011, 99: 102903
|
30 |
Park M H, Lee Y H, Mikolajick T, et al. Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides [J]. Adv. Elect. Mater., 2019, 5: 1800522
|
31 |
Schroeder U, Yurchuk E, Müller J, et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide [J]. Jpn. J. Appl. Phys., 2014, 53: 08LE02
|
32 |
Starschich S, Boettger U. An extensive study of the influence of dopants on the ferroelectric properties of HfO2 [J]. J. Mater. Chem., 2017, 5C: 333
|
33 |
Park M H, Schenk T, Fancher C M, et al. A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants [J]. J. Mater. Chem., 2017, 5C: 4677
|
34 |
Xu L, Nishimura T, Shibayama S, et al. Kinetic pathway of the ferroelectric phase formation in doped HfO2 films [J]. J. Appl. Phys., 2017, 122: 124104
|
35 |
Batra R, Huan T D, Rossetti G A, et al. Dopants promoting ferroelectricity in hafnia: Insights from a comprehensive chemical space exploration [J]. Chem. Mater., 2017, 29: 9102
|
36 |
Materlik R, Künneth C, Kersch A. The origin of ferroelectricity in Hf1 - x Zr x O2: A computational investigation and a surface energy model [J]. J. Appl. Phys., 2015, 117: 134109
|
37 |
Park M H, Lee Y H, Kim H J, et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films [J]. Adv. Mater., 2015, 27: 1811
|
38 |
Polakowski P, Müller J. Ferroelectricity in undoped hafnium oxide [J]. Appl. Phys. Lett., 2015, 106: 232905
|
39 |
Batra R, Tran H D, Ramprasad R. Stabilization of metastable phases in hafnia owing to surface energy effects [J]. Appl. Phys. Lett., 2016, 108: 172902
|
40 |
Künneth C, Materlik R, Kersch A. Modeling ferroelectric film properties and size effects from tetragonal interlayer in Hf1 - x Zr x O2 grains [J]. J. Appl. Phys., 2017, 121: 205304
|
41 |
Park M H, Lee Y H, Kim H J, et al. Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: A comparison of model and experiment [J]. Nanoscale, 2017, 9: 9973
doi: 10.1039/c7nr02121f
pmid: 28681890
|
42 |
Xu L, Nishimura T, Shibayama S, et al. Ferroelectric phase stabilization of HfO2 by nitrogen doping [J]. Appl. Phys. Express, 2016, 9: 091501
|
43 |
Pal A, Narasimhan V K, Weeks S, et al. Enhancing ferroelectricity in dopant-free hafnium oxide [J]. Appl. Phys. Lett., 2017, 110: 022903
|
44 |
Luo Q, Cheng Y, Yang J G, et al. A highly CMOS compatible hafnia-based ferroelectric diode [J]. Nat. Commun., 2020, 11: 1391
doi: 10.1038/s41467-020-15159-2
pmid: 32170177
|
45 |
Bouaziz J, Rojo Romeo P, Baboux N, et al. Imprint issue during retention tests for HfO2-based FRAM: An industrial challenge? [J]. Appl. Phys. Lett., 2021, 118: 082901
|
46 |
Wu J X, Mo F, Saraya T, et al. Monolithic integration of oxide semiconductor FET and ferroelectric capacitor enabled by Sn-doped InGaZnO for 3-D embedded RAM application [J]. IEEE Trans. Electron Devices, 2021, 68: 6617
|
47 |
Beyer S, Dünkel S, Trentzsch M, et al. FEFET: A versatile CMOS compatible device with game-changing potential [A]. 2020 IEEE International Memory Workshop (IMW) [C]. Dresden: IEEE, 2020: 17
|
48 |
Huan T D, Sharma V, Rossetti G A, et al. Pathways towards ferroelectricity in hafnia [J]. Phys. Rev., 2014, 90B: 064111
|
49 |
Sang X H, Grimley E D, Schenk T, et al. On the structural origins of ferroelectricity in HfO2 thin films [J]. Appl. Phys. Lett., 2015, 106: 162905
|
50 |
Mittmann T, Materano M, Chang S C, et al. Impact of oxygen vacancy content in ferroelectric HZO films on the device performance [A]. 2020 IEEE International Electron Devices Meeting (IEDM) [C]. Francisco: IEEE, 2020: 12
|
51 |
Ali T, Polakowski P, Riedel S, et al. High endurance ferroelectric hafnium oxide-based FEFET memory without retention penalty [J]. IEEE Trans. Electron Devices, 2018, 65: 3769
|
52 |
Xiao W W, Liu C, Peng Y, et al. Memory window and endurance improvement of Hf0.5Zr0.5O2-based FEFETs with ZrO2 seed layers characterized by fast voltage pulse measurements [J]. Nanoscale Res. Lett., 2019, 14: 254
|
53 |
Cheema S S, Kwon D, Shanker N, et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon [J]. Naure, 2020, 580: 478
|
54 |
Xiao Z W, Song Z N, Yan Y F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives [J]. Adv. Mater., 2019, 31: 1803792
|
55 |
Okuno J, Kunihiro T, Konishi K, et al. High-endurance and low-voltage operation of 1T1C FeRAM arrays for nonvolatile memory application [A]. 2021 IEEE International Memory Workshop (IMW) [C]. Dresden: IEEE, 2021: 1
|
56 |
Yoo Y W, Jeon W, Lee W, et al. Structure and electrical properties of Al-doped HfO2 and ZrO2 films grown via atomic layer deposition on Mo electrodes [J]. ACS Appl. Mater. Interfaces, 2014, 6: 22474
|
57 |
Alcala R, Materano M, Lomenzo P D, et al. BEOL integrated ferroelectric HfO2-based capacitors for FeRAM: Extrapolation of reliability performance to use conditions [J]. IEEE J. Electron Devices Soc., 2022, 10: 907
|
58 |
Hur J, Luo Y C, Tasneem N, et al. Ferroelectric hafnium zirconium oxide compatible with back-end-of-line process [J]. IEEE Trans. Electron Devices, 2021, 68: 3176
|
59 |
Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines [J]. J. Chem. Phys., 1953, 21: 1087
|
60 |
Alder B J, Wainwright T E. Studies in molecular dynamics. I. General method [J]. J. Chem. Phys., 1959, 31: 459
|
61 |
Rahman A. Correlations in the motion of atoms in liquid argon [J]. Phys. Rev., 1964, 136: A405
|
62 |
Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications [M]. New York: Academic Press, 2001: 63
|
63 |
Lennard-Jones J E. Cohesion [J]. Proc. Phys. Soc., 1931, 43: 461
|
64 |
Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev., 1984, 29B: 6443
|
65 |
Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Phys. Rev., 1992, 46B: 2727
|
66 |
Tersoff J. New empirical approach for the structure and energy of covalent systems [J]. Phys. Rev., 1988, 37B: 6991
|
67 |
Shin Y H, Grinberg I, Chen I W, et al. Nucleation and growth mechanism of ferroelectric domain-wall motion [J]. Nature, 2007, 449: 881
|
68 |
Brown I D, Shannon R D. Empirical bond-strength-bond-length curves for oxides [J]. Acta Cryst., 1973, 29A: 266
|
69 |
Brown I D, Wu K K. Empirical parameters for calculating cation-oxygen bond valences [J]. Acta Cryst., 1976, 32B: 1957
|
70 |
Liu S, Grinberg I, Rappe A M. Development of a bond-valence based interatomic potential for BiFeO3 for accurate molecular dynamics simulations [J]. J. Phys., 2013, 25: 102202
|
71 |
Liu S, Grinberg I, Takenaka H, et al. Reinterpretation of the bond-valence model with bond-order formalism: An improved bond-valence-based interatomic potential for PbTiO3 [J]. Phys. Rev., 2013, 88B: 104102
|
72 |
Liu S, Grinberg I, Rappe A M. Intrinsic ferroelectric switching from first principles [J]. Nature, 2016, 534: 360
|
73 |
Shan T R, Devine B D, Kemper T W, et al. Charge-optimized many-body potential for the hafnium/hafnium oxide system [J]. Phys. Rev., 2010, 81B: 125328
|
74 |
Broglia G, Ori G, Larcher L, et al. Molecular dynamics simulation of amorphous HfO2 for resistive RAM applications [J]. Modell. Simul. Mater. Sci. Eng., 2014, 22: 065006
|
75 |
Schie M, Müller M P, Salinga M, et al. Ion migration in crystalline and amorphous HfO x [J]. J. Chem. Phys., 2017, 146: 094508
|
76 |
Sivaraman G, Krishnamoorthy A N, Baur M, et al. Machine-learned interatomic potentials by active learning: Amorphous and liquid hafnium dioxide [J]. npj Comput. Mater., 2020, 6: 104
|
77 |
Cohen R E. Origin of ferroelectricity in perovskite oxides [J]. Nature, 1992, 358: 136
|
78 |
Phillpot S R, Sinnott S B, Asthagiri A. Atomic-level simulation of ferroelectricity in oxides: Current status and opportunities [J]. Annu. Rev. Mater. Res., 2007, 37: 239
|
79 |
Smith J S, Isayev O, Roitberg A E. ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost [J]. Chem. Sci., 2017, 8: 3192
doi: 10.1039/c6sc05720a
pmid: 28507695
|
80 |
Manzhos S, Carrington T. Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface [J]. J. Chem. Phys., 2008, 129: 224104
|
81 |
Bartók A P, Gillan M J, Manby F R, et al. Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water [J]. Phys. Rev., 2013, 88B: 054104
|
82 |
Morawietz T, Singraber A, Dellago C, et al. How van der Waals interactions determine the unique properties of water [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 8368
doi: 10.1073/pnas.1602375113
pmid: 27402761
|
83 |
Ko H Y, Zhang L F, Santra B, et al. Isotope effects in liquid water via deep potential molecular dynamics [J]. Mol. Phys., 2019, 117: 3269
|
84 |
Eshet H, Khaliullin R Z, Kühne T D, et al. Ab initio quality neural-network potential for sodium [J]. Phys. Rev., 2010, 81B: 184107
|
85 |
Botu V, Ramprasad R. Learning scheme to predict atomic forces and accelerate materials simulations [J]. Phys. Rev., 2015, 92B: 094306
|
86 |
Zhang Y Z, Wang H D, Chen W J, et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models [J]. Comput. Phys. Commun., 2020, 253: 107206
|
87 |
Andolina C M, Williamson P, Saidi W A. Optimization and validation of a deep learning CuZr atomistic potential: Robust applications for crystalline and amorphous phases with near-DFT accuracy [J]. J. Chem. Phys., 2020, 152: 154701
|
88 |
Zhang L F, Lin D Y, Wang H, et al. Active learning of uniformly accurate interatomic potentials for materials simulation [J]. Phys. Rev. Mater., 2019, 3: 023804
|
89 |
Jiang W R, Zhang Y Z, Zhang L F, et al. Accurate deep potential model for the Al-Cu-Mg alloy in the full concentration space [J]. Chin. Phys., 2021, 30B: 050706
|
90 |
Sanville E, Bholoa A, Smith R, et al. Silicon potentials investigated using density functional theory fitted neural networks [J]. J. Phys., 2008, 20: 285219
|
91 |
Behler J, Martoňák R, Donadio D, et al. Pressure-induced phase transitions in silicon studied by neural network-based metadynamics simulations [J]. Phys. Status Solidi, 2008, 245B: 2618
|
92 |
Babaei H, Guo R Q, Hashemi A, et al. Machine-learning-based interatomic potential for phonon transport in perfect crystalline Si and crystalline Si with vacancies [J]. Phys. Rev. Mater., 2019, 3: 074603
|
93 |
Bartók A P, Kermode J, Bernstein N, et al. Machine learning a general-purpose interatomic potential for silicon [J]. Phys. Rev., 2018, 8X: 041048
|
94 |
Sosso G C, Miceli G, Caravati S, et al. Neural network interatomic potential for the phase change material GeTe [J]. Phys. Rev., 2012, 85B: 174103
|
95 |
Thomas J C, Bechtel J S, Natarajan A R, et al. Machine learning the density functional theory potential energy surface for the inorganic halide perovskite CsPbBr3 [J]. Phys. Rev., 2019, 100B: 134101
|
96 |
Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces [J]. Phys. Rev. Lett., 2007, 98: 146401
|
97 |
Bartók A P, Kondor R, Csányi G. On representing chemical environments [J]. Phys. Rev., 2013, 87B: 184115
|
98 |
Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
|
99 |
Zeng J Z, Cao L Q, Xu M Y, et al. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation [J]. Nat. Commun., 2020, 11: 5713
doi: 10.1038/s41467-020-19497-z
pmid: 33177517
|
100 |
Andrade M F C, Ko H Y, Zhang L F, et al. Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics [J]. Chem. Sci., 2020, 11: 2335
|
101 |
Dai F Z, Wen B, Sun Y J, et al. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0 .2Hf0 .2Ti0 .2Nb0 .2-Ta0 .2)C by deep learning potential [J]. J. Mater. Sci. Technol., 2020, 43: 168
|
102 |
Zhang L F, Wang H, Muniz M C, et al. A deep potential model with long-range electrostatic interactions [J]. J. Chem. Phys, 2022, 156: 124107
|
103 |
Wu J, Zhang Y Z, Zhang L F, et al. Deep learning of accurate force field of ferroelectric HfO2 [J]. Phys. Rev., 2021, 103B: 024108
|
104 |
Lyakhov A O, Oganov A R, Stokes H T, et al. New developments in evolutionary structure prediction algorithm USPEX [J]. Comput. Phys. Commun., 2013, 184: 1172
|
105 |
Wu J, Yang J Y, Ma L Y, et al. Modular development of deep potential for complex solid solutions [J]. Phys. Rev., 2023, 107B: 144102
|
106 |
Zhang D, Bi H R, Dai F Z, et al. Pretraining of attention-based deep learning potential model for molecular simulation [J]. npj Comput. Mater., 2024, 10: 94
|
107 |
Wu J, Yang J Y, Liu Y J S, et al. Universal interatomic potential for perovskite oxides [J]. Phys. Rev., 2023, 108B: L180104
|
108 |
Ohtomo A, Hwang H Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface [J]. Nature, 2004, 427: 423
|
109 |
Popović Z S, Satpathy S, Martin R M. Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface [J]. Phys. Rev. Lett., 2008, 101: 256801
|
110 |
Santander-Syro A F, Copie O, Kondo T, et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO3 [J]. Nature, 2011, 469: 189
|
111 |
Caviglia A D, Gabay M, Gariglio S, et al. Tunable Rashba spin-orbit interaction at oxide interfaces [J]. Phys. Rev. Lett., 2010, 104: 126803
|
112 |
Ben Shalom M, Sachs M, Rakhmilevitch D, et al. Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: A magnetotransport study [J]. Phys. Rev. Lett., 2010, 104: 126802
|
113 |
Zhong Z C, Tóth A, Held K. Theory of spin-orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces [J]. Phys. Rev., 2013, 87B: 161102
|
114 |
Ge J F, Liu Z L, Liu C H, et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 [J]. Nat. Mater., 2014, 14: 285
|
115 |
Xu R J, Huang J W, Barnard E S, et al. Strain-induced room-temperature ferroelectricity in SrTiO3 membranes [J]. Nat. Commun., 2020, 11: 3141
|
116 |
He R, Wu H Y, Zhang L F, et al. Structural phase transitions in SrTiO3 from deep potential molecular dynamics [J]. Phys. Rev., 2022, 105B: 064104
|
117 |
He R, Xu H W, Yang P J, et al. Ferroelastic twin-wall-mediated ferroelectriclike behavior and bulk photovoltaic effect in SrTiO3 [J]. Phys. Rev. Lett., 2024, 132: 176801
|
118 |
Scott J F, Salje E K H, Carpenter M A. Domain wall damping and elastic softening in SrTiO3: Evidence for polar twin walls [J]. Phys. Rev. Lett., 2012, 109: 187601
|
119 |
Salje E K H, Aktas O, Carpenter M A, et al. Domains within domains and walls within walls: Evidence for polar domains in cryogenic SrTiO3 [J]. Phys. Rev. Lett., 2013, 111: 247603
|
120 |
Frenkel Y, Haham N, Shperber Y, et al. Imaging and tuning polarity at SrTiO3 domain walls [J]. Nat. Mater., 2017, 16: 1203
|
121 |
Sulzbach M C, Tan H, Estandía S, et al. Polarization and resistive switching in epitaxial 2 nm Hf0 .5Zr0 .5O2 tunnel junctions [J]. ACS Appl. Electron. Mater., 2021, 3: 3657
|
122 |
Traore B, Blaise P, Vianello E, et al. On the origin of low-resistance state retention failure in HfO2-based RRAM and impact of doping/alloying [J]. IEEE Trans. Electron. Devices, 2015, 62: 4029
|
123 |
Nukala P, Ahmadi M, Wei Y F, et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices [J]. Science, 2021, 372: 630
doi: 10.1126/science.abf3789
pmid: 33858991
|
124 |
Song T F, Bachelet R, Saint-Girons G, et al. Epitaxial ferroelectric La-doped Hf0.5Zr0.5O2 thin films [J]. ACS Appl. Electron. Mater., 2020, 2: 3221
|
125 |
Choe D H, Kim S, Moon T, et al. Unexpectedly low barrier of ferroelectric switching in HfO2 via topological domain walls [J]. Mater. Today, 2021, 50: 8
|
126 |
Wei W, Zhao G Q, Zhan X P, et al. Switching pathway-dependent strain-effects on the ferroelectric properties and structural deformations in orthorhombic HfO2 [J]. J. Appl. Phys., 2022, 131: 154101
|
127 |
Ma L Y, Liu S. Structural polymorphism kinetics promoted by charged oxygen vacancies in HfO2 [J]. Phys. Rev. Lett., 2023, 130: 096801
|
128 |
Ma L Y, Wu J, Zhu T Y, et al. Ultrahigh oxygen ion mobility in ferroelectric hafnia [J]. Phys. Rev. Lett., 2023, 131: 256801
|
129 |
Ku B, Jeon Y R, Choi M, et al. Effects of post cooling on the remnant polarization and coercive field characteristics of atomic layer deposited Al-doped HfO2 thin films [J]. Appl. Surf. Sci., 2022, 601: 154039
|
130 |
Kim M K, Kim I J, Lee J S. CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory [J]. Sci. Adv., 2021, 7: eabe1341
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|