|
|
Advances in Machine Learning Molecular Dynamics to Assist Materials Nucleation and Solidification Research |
CHEN Mingyi1,2, HU Junwei1,2, YU Yaochen1,2, NIU Haiyang1,2( ) |
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China |
|
Cite this article:
CHEN Mingyi, HU Junwei, YU Yaochen, NIU Haiyang. Advances in Machine Learning Molecular Dynamics to Assist Materials Nucleation and Solidification Research. Acta Metall Sin, 2024, 60(10): 1329-1344.
|
Abstract Solidification nucleation is an everlasting research topic in the fields of materials science and condensed matter physics. Molecular dynamics (MD) and enhanced sampling methods provide a powerful means to observe the microscopic mechanisms of solidification processes in situ at the atomic level and to analyze the thermodynamic and kinetic properties of phase transitions. Recent advancements in MD simulations, particularly those incorporating machine learning (ML) techniques, have remarkably advanced our understanding of nucleation across different systems. This paper first reviews the basic theory of solidification nucleation and introduces common methods used in solidification nucleation simulation studies. It then delves into the application of ML techniques in three key areas: force fields, enhanced sampling, and order parameters. The paper further highlights several representative systems to demonstrate the practical applications of these methods. Finally, a summary and outlook on the future of ML-assisted MD simulations for studying material solidification were provided.
|
Received: 05 June 2024
|
|
Fund: National Natural Science Foundation of China(92370118,22003050);National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas), and Research Fund of the State Key Laboratory of Solidification Proceeding (NPU) of China(2024-ZD-01) |
Corresponding Authors:
NIU Haiyang, professor, Tel: (029)88495240, E-mail: haiyang.niu@nwpu.edu.cn
|
1 |
Alder B J. Studies in molecular dynamics. III. A mixture of hard spheres [J]. J. Chem. Phys., 1964, 40: 2724
|
2 |
Alder B J, Wainwright T E. Studies in molecular dynamics. I. General method [J]. J. Chem. Phys., 1959, 31: 459
|
3 |
Alder B J, Wainwright T E. Phase transition for a hard sphere system [J]. J. Chem. Phys., 1957, 27: 1208
|
4 |
Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory [J]. Phys. Rev. Lett., 1985, 55: 2471
pmid: 10032153
|
5 |
Blank T B, Brown S D, Calhoun A W, et al. Neural network models of potential energy surfaces [J]. J. Chem. Phys., 1995, 103: 4129
|
6 |
Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces [J]. Phys. Rev. Lett., 2007, 98: 146401
|
7 |
Zeng J Z, Zhang D, Lu D H, et al. DeePMD-kit v2: A software package for deep potential models [J]. J. Chem. Phys., 2023, 159: 054801
|
8 |
Wang H, Zhang L F, Han J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [J]. Comput. Phys. Commun., 2018, 228: 178
|
9 |
Zhang L F, Wang H, Car R, et al. Phase diagram of a deep potential water model [J]. Phys. Rev. Lett., 2021, 126: 236001
|
10 |
Qiu R, Zeng Q Y, Wang H, et al. Anomalous thermal transport across the superionic transition in ice [J]. Chin. Phys. Lett., 2023, 40: 116301
|
11 |
Wang Y, Wang J J, Hermann A, et al. Electronically driven 1D cooperative diffusion in a simple cubic crystal [J]. Phys. Rev., 2021, 11X: 011006
|
12 |
Wang X Y, Wang Z Y, Gao P Y, et al. Data-driven prediction of complex crystal structures of dense lithium [J]. Nat. Commun., 2023, 14: 2924
doi: 10.1038/s41467-023-38650-y
pmid: 37217498
|
13 |
Guo F Y, Chen B, Zeng Q Y, et al. Microstructure evolution under thermo-mechanical operating of rocksalt-structure TiN via neural network potential [J]. J. Chem. Phys., 2023, 159: 204702
|
14 |
Hu T P, Tian J X, Dai F Z, et al. Impact of the local environment on Li ion transport in inorganic components of solid electrolyte interphases [J]. J. Am. Chem. Soc., 2023, 145: 1327
doi: 10.1021/jacs.2c11521
pmid: 36576963
|
15 |
Zeng J Z, Giese T J, Ekesan Ş, et al. Development of range-corrected deep learning potentials for fast, accurate quantum mechanical/molecular mechanical simulations of chemical reactions in solution [J]. J. Chem. Theory Comput., 2021, 17: 6993
doi: 10.1021/acs.jctc.1c00201
pmid: 34644071
|
16 |
Li P F, Jia X Y, Pan X L, et al. Accelerated computation of free energy profile at ab initio quantum mechanical/molecular mechanics accuracy via a semi-empirical reference potential. I. Weighted thermodynamics perturbation [J]. J. Chem. Theory Comput., 2018, 14: 5583
doi: 10.1021/acs.jctc.8b00571
pmid: 30336015
|
17 |
Volmer M, Weber A. Kinetic theory for nucleation of supersaturated structures [J]. Z. Phys. Chem., 1926, 119: 277
|
18 |
Farkas L. Keimbildungsgeschwindigkeit in übersättigten Dämpfen [J]. Z. Phys. Chem., 1927, 125U: 236
|
19 |
Becker R, Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen [J]. Ann. Phys., 1935, 416: 719
|
20 |
Zeldovich Y B. On the theory of new phase formation: Cavitation [J]. Acta Physicochem. USSR, 1943, 18: 1
|
21 |
Pruppacher H R, Klett J D, Wang P K. Microphysics of clouds and precipitation [J]. Aerosol Sci. Technol., 1998, 28: 381
|
22 |
Wang J C, Guo C, Zhang Q, et al. Recent progresses in modeling of nucleation during solidification on the atomic scale [J]. Acta Metall. Sin., 2018, 54: 204
doi: 10.11900/0412.1961.2017.00425
|
|
王锦程, 郭 灿, 张 琪 等. 原子尺度下凝固形核计算模拟研究的进展 [J]. 金属学报, 2018, 54: 204
doi: 10.11900/0412.1961.2017.00425
|
23 |
Sosso G C, Chen J, Cox S J, et al. Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations [J]. Chem. Rev., 2016, 116: 7078
doi: 10.1021/acs.chemrev.5b00744
pmid: 27228560
|
24 |
Zahn D. Thermodynamics and kinetics of prenucleation clusters, classical and non-classical nucleation [J]. ChemPhysChem, 2015, 16: 2069
doi: 10.1002/cphc.201500231
pmid: 25914369
|
25 |
Gebauer D, Kellermeier M, Gale J D, et al. Pre-nucleation clusters as solute precursors in crystallisation [J]. Chem. Soc. Rev., 2014, 43: 2348
doi: 10.1039/c3cs60451a
pmid: 24457316
|
26 |
Langer J S. Theory of spinodal decomposition in alloys [J]. Ann. Phys., 1971, 65: 53
|
27 |
Rosenbluth M N, Rosenbluth A W. Further results on Monte Carlo equations of state [J]. J. Chem. Phys., 1954, 22: 881
|
28 |
Jones J E. On the determination of molecular fields. —II. From the equation of state of a gas [J]. Proc. R. Soc., 1924, 106A: 463
|
29 |
Jones J E. On the determination of molecular fields. —I. From the variation of the viscosity of a gas with temperature [J]. Proc. R. Soc., 1924, 106A: 441
|
30 |
Baskes M I. Application of the embedded-atom method to covalent materials: A semiempirical potential for silicon [J]. Phys. Rev. Lett., 1987, 59: 2666
pmid: 10035617
|
31 |
Baskes M I, Nelson J S, Wright A F. Semiempirical modified embedded-atom potentials for silicon and germanium [J]. Phys. Rev., 1989, 40B: 6085
|
32 |
Tersoff J. New empirical approach for the structure and energy of covalent systems [J]. Phys. Rev., 1988, 37B: 6991
|
33 |
Chenoweth K, Van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J]. J. Phys. Chem., 2008, 112A: 1040
|
34 |
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140: A1133
|
35 |
Hiberty P C, Leforestier C. Expansion of molecular orbital wave functions into valence bond wave functions. A simplified procedure [J]. J. Am. Chem. Soc., 1978, 100: 2012
|
36 |
Ercolessi F, Adams J B. Interatomic potentials from first-principles calculations: The force-matching method [J]. Europhys. Lett., 1994, 26: 583
|
37 |
Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
|
38 |
Jia W L, Wang H, Chen M H, et al. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning [A]. SC20: International Conference for High Performance Computing, Networking, Storage and Analysis [C]. Atlanta: IEEE, 2020: 1
|
39 |
Zhang L F, Wang H, Muniz M C, et al. A deep potential model with long-range electrostatic interactions [J]. J. Chem. Phys., 2022, 156: 124107
|
40 |
Bartók A P, Kondor R, Csányi G. On representing chemical environments [J]. Phys. Rev., 2013, 87B: 184115
|
41 |
Jinnouchi R, Karsai F, Verdi C, et al. Descriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials [J]. J. Chem. Phys., 2020, 152: 234102
|
42 |
Jinnouchi R, Karsai F, Kresse G. On-the-fly machine learning force field generation: Application to melting points [J]. Phys. Rev., 2019, 100B: 014105
|
43 |
Jinnouchi R, Lahnsteiner J, Karsai F, et al. Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference [J]. Phys. Rev. Lett., 2019, 122: 225701
|
44 |
Skilling J. Maximum Entropy and Bayesian Methods [M]. Dordrecht: Springer, 1989: 89
|
45 |
Zhang Y Z, Wang H D, Chen W J, et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models [J]. Comput. Phys. Commun., 2020, 253: 107206
|
46 |
Invernizzi M, Piaggi P M, Parrinello M. Unified approach to enhanced sampling [J]. Phys. Rev., 2020, 10X: 041034
|
47 |
Laio A, Parrinello M. Escaping free-energy minima [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 12562
pmid: 12271136
|
48 |
Barducci A, Bussi G, Parrinello M. Well-tempered metadynamics: A smoothly converging and tunable free-energy method [J]. Phys. Rev. Lett., 2008, 100: 020603
|
49 |
Swendsen R H, Wang J S. Replica Monte Carlo simulation of spin-glasses [J]. Phys. Rev. Lett., 1986, 57: 2607
pmid: 10033814
|
50 |
Gao Y Q. An integrate-over-temperature approach for enhanced sampling [J]. J. Chem. Phys., 2008, 128: 064105
|
51 |
Yang Y I, Niu H Y, Parrinello M. Combining metadynamics and integrated tempering sampling [J]. J. Phys. Chem. Lett., 2018, 9: 6426
doi: 10.1021/acs.jpclett.8b03005
pmid: 30354148
|
52 |
Dellago C, Bolhuis P G, Csajka F S, et al. Transition path sampling and the calculation of rate constants [J]. J. Chem. Phys., 1998, 108: 1964
|
53 |
Allen R J, Frenkel D, Ten Wolde P R. Simulating rare events in equilibrium or nonequilibrium stochastic systems [J]. J. Chem. Phys., 2006, 124: 024102
|
54 |
Allen R J, Frenkel D, Ten Wolde P R. Forward flux sampling-type schemes for simulating rare events: Efficiency analysis [J]. J. Chem. Phys., 2006, 124: 194111
|
55 |
Abrams J B, Tuckerman M E. Efficient and direct generation of multidimensional free energy surfaces via adiabatic dynamics without coordinate transformations [J]. J. Phys. Chem., 2008, 112B: 15742
|
56 |
Yu T Q, Chen P Y, Chen M, et al. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions [J]. J. Chem. Phys., 2014, 140: 214109
|
57 |
Grafke T, Vanden-Eijnden E. Numerical computation of rare events via large deviation theory [J]. Chaos, 2019, 29: 063118
|
58 |
Hartmann C, Kebiri O, Neureither L, et al. Variational approach to rare event simulation using least-squares regression [J]. Chaos, 2019, 29: 063107
|
59 |
Valsson O, Parrinello M. Variational approach to enhanced sampling and free energy calculations [J]. Phys. Rev. Lett., 2014, 113: 090601
|
60 |
Zhang J, Yang Y I, Noé F. Targeted adversarial learning optimized sampling [J]. J. Phys. Chem. Lett., 2019, 10: 5791
doi: 10.1021/acs.jpclett.9b02173
pmid: 31522495
|
61 |
Petitjean M. On the root mean square quantitative chirality and quantitative symmetry measures [J]. J. Math. Phys., 1999, 40: 4587
|
62 |
Niu H Y, Piaggi P M, Invernizzi M, et al. Molecular dynamics simulations of liquid silica crystallization [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 5348
doi: 10.1073/pnas.1803919115
pmid: 29735667
|
63 |
Sellberg J A, Huang C, McQueen T A, et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature [J]. Nature, 2014, 510: 381
|
64 |
Debye P. Zerstreuung von röntgenstrahlen [J]. Ann. Phys., 1915, 351: 809
|
65 |
Lin Z B, Zhigilei L V. Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: Molecular dynamics study [J]. Phys. Rev., 2006, 73B: 184113
|
66 |
Bonati L, Parrinello M. Silicon liquid structure and crystal nucleation from ab initio deep metadynamics [J]. Phys. Rev. Lett., 2018, 121: 265701
|
67 |
Zhang Y Y, Niu H Y, Piccini G M, et al. Improving collective variables: The case of crystallization [J]. J. Chem. Phys., 2019, 150: 094509
|
68 |
Yang M Y, Karmakar T, Parrinello M. Liquid-liquid critical point in phosphorus [J]. Phys. Rev. Lett., 2021, 127: 080603
|
69 |
Zhang L S, Yang M Y, Zhang S W, et al. Unveiling the crystallization mechanism of cadmium selenide via molecular dynamics simulation with machine-learning-based deep potential [J]. J. Mater. Sci. Technol., 2024, 185: 23
doi: 10.1016/j.jmst.2023.09.059
|
70 |
Niu H Y, Yang Y I, Parrinello M. Temperature dependence of homogeneous nucleation in ice [J]. Phys. Rev. Lett., 2019, 122: 245501
|
71 |
Li M D, Zhang J, Niu H Y, et al. Phase transition between crystalline variants of ordinary ice [J]. J. Phys. Chem. Lett., 2022, 13: 8601
doi: 10.1021/acs.jpclett.2c02176
pmid: 36073968
|
72 |
Deng J, Niu H Y, Hu J W, et al. Melting of MgSiO3 determined by machine learning potentials [J]. Phys. Rev., 2023, 107B: 064103
|
73 |
Ahlawat P, Hinderhofer A, Alharbi E A, et al. A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3 [J]. Sci. Adv., 2021, 7: eabe3326
|
74 |
Mendels D, Piccini G M, Parrinello M. Collective variables from local fluctuations [J]. J. Phys. Chem. Lett., 2018, 9: 2776
doi: 10.1021/acs.jpclett.8b00733
pmid: 29733652
|
75 |
Bonati L, Rizzi V, Parrinello M. Data-driven collective variables for enhanced sampling [J]. J. Phys. Chem. Lett., 2020, 11: 2998
doi: 10.1021/acs.jpclett.0c00535
pmid: 32239945
|
76 |
Naritomi Y, Fuchigami S. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions [J]. J. Chem. Phys., 2011, 134: 065101
|
77 |
Bonati L, Piccini G M, Parrinello M. Deep learning the slow modes for rare events sampling [J]. Proc. Natl. Acad. Sci. USA, 2021, 118: e2113533118
|
78 |
Yuan J H, Chen Y, Duan X M, et al. CdSe optical parametric oscillator operating at 12.07 µm with 170 mW output [J]. Opt. Laser Technol., 2017, 92: 1
|
79 |
Yuan J H, Duan X M, Yao B Q, et al. Tunable 10- to 11-μm CdSe optical parametric oscillator pumped by a 2.1-μm Ho: YAG laser [J]. Appl. Phys., 2016, 122B: 202
|
80 |
Ninomiya S, Adachi S. Optical properties of cubic and hexagonal CdSe [J]. J. Appl. Phys., 1995, 78: 4681
|
81 |
Park S H, Casey M P, Falk J. Nonlinear optical properties of CdSe quantum dots [J]. J. Appl. Phys., 1993, 73: 8041
|
82 |
Steininger J. Growth of CdSe single crystals by temperature gradient solution zoning in excess Se [J]. Mater. Res. Bull., 1968, 3: 595
|
83 |
Štich I, Car R, Parrinello M. Structural bonding, dynamical, and electronic properties of liquid silicon: An ab initio molecular-dynamics study [J]. Phys. Rev., 1991, 44B: 4262
|
84 |
Bartels-Rausch T. Ten things we need to know about ice and snow [J]. Nature, 2013, 494: 27
|
85 |
Matsumoto M, Saito S, Ohmine I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing [J]. Nature, 2002, 416: 409
|
86 |
Tanaka H. Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization: Bond orientational order in liquids [J]. Eur. Phys. J., 2012, 35E: 113
|
87 |
Bullock G, Molinero V. Low-density liquid water is the mother of ice: On the relation between mesostructure, thermodynamics and ice crystallization in solutions [J]. Faraday Discuss., 2013, 167: 371
pmid: 24640501
|
88 |
Moore E B, Molinero V. Structural transformation in supercooled water controls the crystallization rate of ice [J]. Nature, 2011, 479: 506
|
89 |
Fitzner M, Sosso G C, Cox S J, et al. Ice is born in low-mobility regions of supercooled liquid water [J]. Proc. Natl. Acad. Sci. USA, 2019, 116: 2009
doi: 10.1073/pnas.1817135116
pmid: 30670640
|
90 |
Haji-Akbari A, Debenedetti P G. Direct calculation of ice homogeneous nucleation rate for a molecular model of water [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 10582
doi: 10.1073/pnas.1509267112
pmid: 26240318
|
91 |
Chen M Y, Tan L, Wang H, et al. Imperfectly coordinated water molecules pave the way for homogeneous ice nucleation [DB/OL]. arXiv: 2304. 12665, 2023
|
92 |
Piaggi P M, Weis J, Panagiotopoulos A Z, et al. Homogeneous ice nucleation in an ab initio machine-learning model of water [J]. Proc. Natl. Acad. Sci. USA, 2022, 119: e2207294119.
|
93 |
Sanchez-Burgos I, Tejedor A R, Vega C, et al. Homogeneous ice nucleation rates for mW and TIP4P/ICE models through Lattice Mold calculations [J]. J. Chem. Phys., 2022, 157: 094503
|
94 |
Gong X G, Chiarotti G L, Parrinello M, et al. α-gallium: A metallic molecular crystal [J]. Phys. Rev., 1991, 43B: 14277
|
95 |
Narten A H. Liquid gallium: Comparison of x-ray and neutron-diffraction data [J]. J. Chem. Phys., 1972, 56: 1185
|
96 |
Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: Fundamentals and applications in chemistry [J]. Chem. Soc. Rev., 2018, 47: 4073
doi: 10.1039/c7cs00043j
pmid: 29611563
|
97 |
Heine V. Crystal structure of gallium metal [J]. J. Phys., 1968, 1C: 222
|
98 |
Niu H Y, Bonati L, Piaggi P M, et al. Ab initio phase diagram and nucleation of gallium [J]. Nat. Commun., 2020, 11: 2654
doi: 10.1038/s41467-020-16372-9
pmid: 32461573
|
99 |
Bosio L. Crystal structures of Ga(II) and Ga(III) [J]. J. Chem. Phys., 1978, 68: 1221
|
100 |
Piaggi P M, Parrinello M. Multithermal-multibaric molecular simulations from a variational principle [J]. Phys. Rev. Lett., 2019, 122: 050601
|
101 |
Espinosa J R, Vega C, Valeriani C, et al. Seeding approach to crystal nucleation [J]. J. Chem. Phys., 2016, 144: 034501
|
102 |
San X Y, Hu J W, Chen M Y, et al. Unlocking the mysterious polytypic features within vaterite CaCO3 [J]. Nat. Commun., 2023, 14: 7858
doi: 10.1038/s41467-023-43625-0
pmid: 38030637
|
103 |
Zhang D, Liu X Z J, Zhang X Y, et al. DPA-2: Towards a universal large atomic model for molecular and material simulation [DB/OL]. arXiv: 2312. 15492, 2023
|
104 |
Mo P H, Li C, Zhao D, et al. Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture [J]. npj Comput. Mater., 2022, 8: 107
|
105 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
|
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
106 |
AIS square [EB/OL].
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|