Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (10): 1299-1311    DOI: 10.11900/0412.1961.2024.00141
Overview Current Issue | Archive | Adv Search |
Deep Potentials for Materials Science
WEN Tongqi(), LIU Huaiyi, GONG Xiaoguo, YE Beilin, LIU Siyu, LI Zhuoyuan
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
Cite this article: 

WEN Tongqi, LIU Huaiyi, GONG Xiaoguo, YE Beilin, LIU Siyu, LI Zhuoyuan. Deep Potentials for Materials Science. Acta Metall Sin, 2024, 60(10): 1299-1311.

Download:  HTML  PDF(2189KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Although first-principles calculations offer high precision, they are prohibitively expensive. Conversely, molecular dynamics simulations employing classical interatomic potentials, or force fields, offer quicker but less precise outcomes. To balance between computational speed and accuracy, machine learning (ML) potential functions have been developed and have gained widespread application. The deep potential (DP) method, a type of ML potential, has attracted considerable attention recently. This paper provides a comprehensive review of DP methods in materials science. It begins with an introduction to the theoretical foundation of DP, followed by a detailed exposition of the DP model development and usage. Additionally, the application of DP in various material systems is briefly reviewed. AIS-Square contributes training databases and workflows essential for developing DP models. The paper concludes by assessing the performance of DP models relative to both first-principles calculations and classical potentials in terms of accuracy and efficiency. Finally, a brief outlook on future developments trends is provided.

Key words:  deep potential      atomistic simulation      machine learning potential function      neural network     
Received:  06 May 2024     
ZTFLH:  TG148  
Fund: University of Hong Kong via Seed Fund(2201100392)
Corresponding Authors:  WEN Tongqi, research assistant professor, Tel: (+852)97049527, E-mail: tongqwen@hku.hk

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00141     OR     https://www.ams.org.cn/EN/Y2024/V60/I10/1299

Fig.1  Learning curves of both energy (ΔE) and force (ΔF) with DeepPot-SE and DPA-1, under different setups and on different systems[32]
(a) learning curves on the AlMgCu ternary subset, with DeepPot-SE and DPA-1 models pretrained on single-element and binary subsets
(b, c) learning curves on high-entropy alloy (HEA) (b) and AlCu (c), with DeepPot-SE (from scratch) and DPA-1 (both from scratch and pretrained on OC2M)
Fig.2  Comparative analyses of sample efficiency on downstream tasks[33]
(a-e) RMSE convergence of energy and force predictions on FerroEle-D (a), SSE-PBESol (b), SemiCond-D (c), ANI-1x (d), H2O-PBE0TS-MD (e) tasks, respectively (RMSE—root-mean-square error)
Fig.3  Evaluations of the distilled model across various downstream applications[33]
(a, b) comparisons of the radial distribution function (RDF) (a) and angular distribution function (ADF) (b) for the H2O-PBE0TS-MD dataset between the reference ab initio molecular dynamics (AIMD) results[35] and the distilled mode (rO-O—radial distribution function for O-O, ψO-O-O—angular distribution function for O-O-O)
(c) comparisons of diffusion constants for the solid-state electrolyte Li10SnP2S12 (T—temperature)
(d, e) temperature-dependent lattice constants (a, b, and c) for the ternary solid solution ferroelectric perovskite oxides Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) (T—tetragonal, C—cubic)
(f) computational efficiency assessment for the aforementioned three systems (Natoms—number of atoms)
Fig.4  Comparisons of the speed of MD simulations using the compressed Ti DP, an embedded atomic potential (EAM), and/or an modified embedded atomic potential (MEAM) functions on CPU (a) and GPU (b) systems[44]
Fig.5  Temperature-pressure phase diagram of gallium[54]
Fig.6  Phase diagram of water[82]
(a1) DP model (red solid lines) and experiment (gray solid lines) for T < 420 K (P—pressure, F—fluid)
(a2) phase diagram at high T and P
(b) phase diagram of TIP4P/2005[83] water
1 Hafner J. Atomic-scale computational materials science [J]. Acta Mater., 2000, 48: 71
2 Born M, Oppenheimer R. Zur quantentheorie der molekeln [J]. Ann. Phys., 1927, 389: 457
3 Dirac P A M. Quantum mechanics of many-electron systems [J]. Proc. Roy. Soc., 1929, 123A: 714
4 Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140: A1133
5 Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules [J]. Phys. Rev., 1967, 159: 98
6 Zwanzig R W. High-temperature equation of state by a perturbation method. I. Nonpolar gases [J]. J. Chem. Phys., 1954, 22: 1420
7 Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems [J]. Phys. Rev., 1989, 39B: 5566
8 Vink R L C, Barkema G T, van der Weg W F, et al. Fitting the Stillinger-Weber potential to amorphous silicon [J]. J. Non-Cryst. Solids, 2001, 282: 248
9 Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev., 1984, 29B: 6443
10 Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Phys. Rev., 1992, 46B: 2727
11 Prentice J C A, Aarons J, Womack J C, et al. The ONETEP linear-scaling density functional theory program [J]. J. Chem. Phys., 2020, 152: 174111
12 Hacene M, Anciaux-Sedrakian A, Rozanska X, et al. Accelerating VASP electronic structure calculations using graphic processing units [J]. J. Comput. Chem., 2012, 33: 2581
doi: 10.1002/jcc.23096 pmid: 22903247
13 Hutchinson M, Widom M. VASP on a GPU: Application to exact-exchange calculations of the stability of elemental boron [J]. Comput. Phys. Commun., 2012, 183: 1422
14 Jia W L, Cao Z Y, Wang L, et al. The analysis of a plane wave pseudopotential density functional theory code on a GPU machine [J]. Comput. Phys. Commun., 2013, 184: 9
15 Jia W L, Fu J Y, Cao Z Y, et al. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines [J]. J. Comput. Phys., 2013, 251: 102
16 Bishop C M. Pattern Recognition and Machine Learning [M]. New York: Springer, 2006: 1122
17 Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects [J]. Science, 2015, 349: 255
doi: 10.1126/science.aaa8415 pmid: 26185243
18 Mahesh B. Machine learning algorithms-A review [J]. Int. J. Sci. Res., 2020, 9: 381
19 Blank T B, Brown S D, Calhoun A W, et al. Neural network models of potential energy surfaces [J]. J. Chem. Phys., 1995, 103: 4129
20 Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces [J]. Phys. Rev. Lett., 2007, 98: 146401
21 Schütt K T, Sauceda H E, Kindermans P J, et al. SchNet—A deep learning architecture for molecules and materials [J]. J. Chem. Phys., 2018, 148: 241722
22 Schütt K T, Kessel P, Gastegger M, et al. SchNetPack: A deep learning toolbox for atomistic systems [J]. J. Chem. Theory Comput., 2019, 15: 448
doi: 10.1021/acs.jctc.8b00908 pmid: 30481453
23 Ghasemi S A, Hofstetter A, Saha S, et al. Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network [J]. Phys. Rev., 2015, 92B: 045131
24 Hy T S, Trivedi S, Pan H, et al. Predicting molecular properties with covariant compositional networks [J]. J. Chem. Phys., 2018, 148: 241745
25 Unke O T, Meuwly M. PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges [J]. J. Chem. Theory Comput., 2019, 15: 3678
doi: 10.1021/acs.jctc.9b00181 pmid: 31042390
26 Pun G P, Batra R, Ramprasad R, et al. Physically informed artificial neural networks for atomistic modeling of materials [J]. Nat. Commun., 2019, 10: 2339
27 Zuo Y X, Chen C, Li X G, et al. Performance and cost assessment of machine learning interatomic potentials [J]. J. Phys. Chem., 2020, 124A: 731
28 Han J Q, Zhang L F, Car R, et al. Deep potential: A general representation of a many-body potential energy surface [J]. Commun. Comput. Phys., 2018, 23: 629
29 Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
30 Wang H, Zhang L F, Han J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [J]. Comput. Phys. Commun., 2018, 228: 178
31 Jia W L, Wang H, Chen M H, et al. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning [A]. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis [C]. Atlanta: IEEE, 2020: 1
32 Zhang D, Bi H R, Dai F Z, et al. Pretraining of attention-based deep learning potential model for molecular simulation [J]. npj Comput. Mater., 2024, 10: 94
33 Wang H, Zhang D, Liu X Z J, et al. DPA-2: Towards a universal large atomic model for molecular and materials simulation [DB/OL]. arXiv: 2312. 15492, 2024
34 Zhang L F, Han J Q, Wang H, et al. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems [A]. Advances in Neural Information Processing Systems [C]. Montreal, Canada, Dec.2-8, 2018
35 Perdew J P, Schmidt K. Jacob's ladder of density functional approximations for the exchange-correlation energy [J]. AIP Conf. Proc., 2001, 577: 1
36 DiStasio R A, Santra B, Li Z F, et al. The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water [J]. J. Chem. Phys., 2014, 141: 084502
37 Li Z Y, Wen T Q, Zhang Y Z, et al. An extendable cloud-native alloy property explorer [DB/OL]. arXiv: 2404. 17330, 2024
38 Gasteiger J, Shuaibi M, Sriram A, et al. GemNet-OC: Developing graph neural networks for large and diverse molecular simulation datasets [J]. Trans. Mach. Learn. Res., 2022
39 Lu D H, Wang H, Chen M H, et al. 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy [J]. Comput. Phys. Commun., 2021, 259: 107624
40 Lu D H, Jiang W R, Chen Y X, et al. DP compress: A model compression scheme for generating efficient deep potential models [J]. J. Chem. Theory Comput., 2022, 18: 5559
doi: 10.1021/acs.jctc.2c00102 pmid: 35926122
41 Wen T Q, Wang R, Zhu L Y, et al. Specialising neural network potentials for accurate properties and application to the mechanical response of titanium [J]. npj Comput. Mater., 2021, 7: 206
42 Mendelev M I, Underwood T L, Ackland G J. Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium [J]. J. Chem. Phys., 2016, 145: 154102
43 Hennig R G, Lenosky T J, Trinkle D R, et al. Classical potential describes martensitic phase transformations between the α, β, and ω titanium phases [J]. Phys. Rev., 2008, 78B: 054121
44 Wen T Q, Zhang L F, Wang H, et al. Deep potentials for materials science [J]. Mater. Futures, 2022, 1: 022601
45 Zhang L F, Lin D Y, Wang H, et al. Active learning of uniformly accurate interatomic potentials for materials simulation [J]. Phys. Rev. Mater., 2019, 3: 023804
46 Wang H, Guo X, Zhang L F, et al. Deep learning inter-atomic potential model for accurate irradiation damage simulations [J]. Appl. Phys. Lett., 2019, 114: 244101
47 Clouet E, Caillard D, Chaari N, et al. Dislocation locking versus easy glide in titanium and zirconium [J]. Nat. Mater., 2015, 14: 931
doi: 10.1038/nmat4340 pmid: 26147845
48 Wang X Y, Wang Y N, Zhang L F, et al. A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment [J]. Nucl. Fusion, 2022, 62: 126013
49 Gong X G, Li Z Y, Pattamatta A S L S, et al. An accurate and transferable machine learning interatomic potential for nickel [J]. Commun. Mater., 2024, 5: 157
50 Andolina C M, Bon M, Passerone D, et al. Robust, multi-length-scale, machine learning potential for Ag-Au bimetallic alloys from clusters to bulk materials [J]. J. Phys. Chem., 2021, 125: 17438
51 Wang Y N, Zhang L F, Xu B, et al. A generalizable machine learning potential of Ag-Au nanoalloys and its application to surface reconstruction, segregation and diffusion [J]. Modell. Simul. Mater. Sci. Eng., 2022, 30: 025003
52 Chen B, Zeng Q Y, Wang H, et al. Atomistic mechanism of phase transition in shock compressed gold revealed by deep potential [DB/OL]. arXiv: 2006. 13136, 2020
53 Jiao J Y, Lai G M, Zhao L, et al. Self-healing mechanism of lithium in lithium metal [J]. Adv. Sci., 2022, 9: 2105574
54 Niu H Y, Bonati L, Piaggi P M, et al. Ab initio phase diagram and nucleation of gallium [J]. Nat. Commun., 2020, 11: 2654
doi: 10.1038/s41467-020-16372-9 pmid: 32461573
55 Wang J J, Shen H, Yang R Y, et al. A deep learning interatomic potential developed for atomistic simulation of carbon materials [J]. Carbon, 2022, 186: 1
56 Bonati L, Parrinello M. Silicon liquid structure and crystal nucleation from ab initio deep metadynamics [J]. Phys. Rev. Lett., 2018, 121: 265701
57 Li R, Lee E, Luo T. A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases [J]. Mater. Today Phys., 2020, 12: 100181
58 Yang M Y, Karmakar T, Parrinello M. Liquid-liquid critical point in phosphorus [J]. Phys. Rev. Lett., 2021, 127: 080603
59 Jain A, Ong S P, Hautier G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation [J]. APL Mater., 2013, 1: 011002
60 Wang H D, Zhang Y Z, Zhang L F, et al. Crystal structure prediction of binary alloys via deep potential [J]. Front. Chem., 2020, 8: 589795
61 Andolina C M, Wright J G, Das N, et al. Improved Al-Mg alloy surface segregation predictions with a machine learning atomistic potential [J]. Phys. Rev. Mater., 2021, 5: 083804
62 Jiang W R, Zhang Y Z, Zhang L F, et al. Accurate deep potential model for the Al-Cu-Mg alloy in the full concentration space [J]. Chin. Phys., 2021, 30B: 050706
63 Cao G H, Liang J J, Guo Z L, et al. Liquid metal for high-entropy alloy nanoparticles synthesis [J]. Nature, 2023, 619: 73
64 Bourgeois L, Zhang Y, Zhang Z Z, et al. Transforming solid-state precipitates via excess vacancies [J]. Nat. Commun., 2020, 11: 1248
doi: 10.1038/s41467-020-15087-1 pmid: 32144262
65 Cheng B Q, Zhao X J, Zhang Y, et al. Co-segregation of Mg and Zn atoms at the planar η1-precipitate/Al matrix interface in an aged Al-Zn-Mg alloy [J]. Scr. Mater., 2020, 185: 51
66 Wen T Q, Wang C Z, Kramer M J, et al. Development of a deep machine learning interatomic potential for metalloid-containing Pd-Si compounds [J]. Phys. Rev., 2019, 100B: 174101
67 Tang L, Yang Z J, Wen T Q, et al. Development of interatomic potential for Al-Tb alloys using a deep neural network learning method [J]. Phys. Chem. Chem. Phys., 2020, 22: 18467
doi: 10.1039/d0cp01689f pmid: 32778859
68 Tang L, Yang Z J, Wen T Q, et al. Short- and medium-range orders in Al90Tb10 glass and their relation to the structures of competing crystalline phases [J]. Acta Mater., 2021, 204: 116513
69 Han I, McKeown J T, Tang L, et al. Dynamic observation of dendritic quasicrystal growth upon laser-induced solid-state transformation [J]. Phys. Rev. Lett., 2020, 125: 195503
70 Tang L, Ho K M, Wang C Z. Molecular dynamics simulation of metallic Al-Ce liquids using a neural network machine learning interatomic potential [J]. J. Chem. Phys., 2021, 155: 194503
71 Balyakin I A, Rempel S V, Ryltsev R E, et al. Deep machine learning interatomic potential for liquid silica [J]. Phys. Rev., 2020, 102E: 052125
72 Wan T Q, Luo C X, Sun Y, et al. Thermoelastic properties of bridgmanite using deep-potential molecular dynamics [J]. Phys. Rev., 2024, 109B: 094101
73 Huang J X, Zhang L F, Wang H, et al. Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors [J]. J. Chem. Phys., 2021, 154: 094703
74 Ko H Y, Zhang L, Santra B, et al. Isotope effects in liquid water via deep potential molecular dynamics [J]. Mol. Phys., 2019, 117: 3269
75 Zhang C Y, Zhang L F, Xu J H, et al. Isotope effects in x-ray absorption spectra of liquid water [J]. Phys. Rev., 2020, 102B: 115155
76 Xu J H, Zhang C Y, Zhang L F, et al. Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the SCAN functional [J]. Phys. Rev., 2020, 102B: 214113
77 Calio P B, Li C H, Voth G A. Resolving the structural debate for the hydrated excess proton in water [J]. J. Am. Chem. Soc., 2021, 143: 18672
doi: 10.1021/jacs.1c08552 pmid: 34723507
78 Sommers G M, Calegari Andrade M F, Zhang L F, et al. Raman spectrum and polarizability of liquid water from deep neural networks [J]. Phys. Chem. Chem. Phys., 2020, 22: 10592
doi: 10.1039/d0cp01893g pmid: 32377657
79 Gartner T E, Zhang L F, Piaggi P M, et al. Signatures of a liquid-liquid transition in an ab initio deep neural network model for water [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 26040
doi: 10.1073/pnas.2015440117 pmid: 33008883
80 Andreani C, Romanelli G, Parmentier A, et al. Hydrogen dynamics in supercritical water probed by neutron scattering and computer simulations [J]. J. Phys. Chem. Lett., 2020, 11: 9461
doi: 10.1021/acs.jpclett.0c02547 pmid: 33108193
81 Piaggi P M, Panagiotopoulos A Z, Debenedetti P G, et al. Phase equilibrium of water with hexagonal and cubic ice using the SCAN functional [J]. J. Chem. Theory Comput., 2021, 17: 3065
doi: 10.1021/acs.jctc.1c00041 pmid: 33835819
82 Zhang L F, Wang H, Car R, et al. Phase diagram of a deep potential water model [J]. Phys. Rev. Lett., 2021, 126: 236001
83 Aragones J L, Conde M M, Noya E G, et al. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: The appearance of a plastic crystal phase [J]. Phys. Chem. Chem. Phys., 2009, 11: 543
doi: 10.1039/b812834k pmid: 19283272
84 Tisi D, Zhang L F, Bertossa R, et al. Heat transport in liquid water from first-principles and deep neural network simulations [J]. Phys. Rev., 2021, 104B: 224202
85 Zhang C Y, Tang F J, Chen M H, et al. Modeling liquid water by climbing up Jacob's ladder in density functional theory facilitated by using deep neural network potentials [J]. J. Phys. Chem., 2021, 125B: 11444
86 Torres A, Pedroza L S, Fernandez-Serra M, et al. Using neural network force fields to ascertain the quality of ab initio simulations of liquid water [J]. J. Phys. Chem., 2021, 125B: 10772
87 Shi Y, Doyle C C, Beck T L. Condensed phase water molecular multipole moments from deep neural network models trained on ab initio simulation data [J]. J. Phys. Chem. Lett., 2021, 12: 10310
doi: 10.1021/acs.jpclett.1c02328 pmid: 34662132
88 Chen M Y, Tan L, Wang H, et al. Imperfectly coordinated water molecules pave the way for homogeneous ice nucleation [DB/OL]. arXiv: 2304. 12665, 2023
89 Xu M Y, Zhu T, Zhang J Z H. Molecular dynamics simulation of zinc ion in water with an ab initio based neural network potential [J]. J. Phys. Chem., 2019, 123A: 6587
90 Niblett S P, Galib M, Limmer D T. Learning intermolecular forces at liquid-vapor interfaces [J]. J. Chem. Phys., 2021, 155: 164101
91 Galib M, Limmer D T. Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes [J]. Science, 2021, 371: 921
[1] HUANG Zengxin, JIANG Yihang, LAI Chunming, WU Qingjie, LIU Dahai, YANG Liang. Analysis of the Correlation Between the Energy and Crystallographic Orientation of Grain Boundaries in Fe Based on Atomistic Simulations[J]. 金属学报, 2024, 60(9): 1289-1298.
[2] LIU Shi, HUANG Jiawei, WU Jing. Application of Machine Learning Force Fields for Modeling Ferroelectric Materials[J]. 金属学报, 2024, 60(10): 1312-1328.
[3] GAO Tianyu, ZENG Qiyu, CHEN Bo, KANG Dongdong, DAI Jiayu. Neural Network Molecular Dynamics Study of Ultrafast Laser-Induced Melting of Copper Nanofilms[J]. 金属学报, 2024, 60(10): 1439-1450.
[4] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[5] Tao WANG, Zhipeng WAN, Yu SUN, Zhao LI, Yong ZHANG, Lianxi HU. Dynamic Softening Behavior and Microstructure Evolution of Nickel Base Superalloy[J]. 金属学报, 2018, 54(1): 83-92.
[6] Binshan YU,Sheliang WANG,Tao YANG,Yujiang FAN. BP Neural Netwok Constitutive Model Based on Optimization with Genetic Algorithm for SMA[J]. 金属学报, 2017, 53(2): 248-256.
[7] DAI Fuzhi, ZHANG Wenzheng. AN INVESTIGATION ON THE EQUILIBRIUM MOR- PHOLOGY AND INTERFACIAL STRUCTURES OF PRICIPITATES IN DUPLEX STAINLESS STEEL BY ATOMISTIC SIMULATION[J]. 金属学报, 2014, 50(9): 1123-1127.
[8] LI Xiaoyan. ATOMISTIC SIMULATIONS OF BAUSCHINGER EFFECT IN NANOCRYSTALLINE ALUMINUM THIN FILMS[J]. 金属学报, 2014, 50(2): 219-225.
[9] HOU Jieshan, ZHOU Lanzhang, GUO Jianting, YUAN Chao. APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR PREDICTION OF SUPERPLASTIC  BEHAVIOUR IN NiAl ALLOYS[J]. 金属学报, 2013, 49(11): 1333-1338.
[10] YU Hui KIM Youngmin YU Huashun YOU Bongsun MIN Guanghui. HOT DEFMATION BEHAVIOR AND HOT WORKABILITY OF Mg-Zn-Zr-Ce ALLOY[J]. 金属学报, 2012, 48(9): 1123-1131.
[11] LI Xincheng; CHEN Guang; ZHU Weixing; WANG Yun; ZHANG KAihua; WANG Jianmin. Intelligent Expert System Used in Gear Material Selection and its Heat Treatment[J]. 金属学报, 2004, 40(10): 1051-1054 .
[12] ZHANG Zhaochun; WU Zhu; LI Chonghe; QIN Pei; CHEN Nianyi(Shanghai Institute of Metallurgy; The Chinese Academy of Sciences; Shanghai 200050)Correspondent: WU Zhu; Tel: (021)62511070-8932; Fax: (021)62513510. APPLICATION OF PATTERN RECOGNITION AND ARTIFICIAL NEURAL NETWORK TO IMPROVE THE MECHANICAL PROPERTIES OF CYLINDER BLOCK CAST OF AUTOMOBILE ENGINE[J]. 金属学报, 1998, 34(10): 1068-1072.
[13] CHEN Kai;YU Menghuai;HU Shangxu (Zhejiang University; Hangzhou 310027)YU Sirong; HE Zhenming(Jilin University of Technology; Changchun 130025)(Manuscript received 1996-04-30; in revise form 1996-09-28). SIMULATION OF ROOM-TEMPERATURE STRENGTH OF ZA22/Al_20_3(F) COMPOSITES[J]. 金属学报, 1997, 33(4): 437-442.
[14] GUO Jin; LI Chonghe; QIN Pei; ZENG Wenming; CHEN Nianyi(Shanghai Institute of Metallurgy; Chinese Academy of Sciences; Shanghai 200050) (Manuscript received 1995-06-23 ; in revised form; 1995-09- 15). ARTIFICIAL NEURAL NETWORK METHOD APPLIED TO P-C RELATIONSHIPS OF AB_5-TYPE HYDROGEN STORAGE ALLOYS[J]. 金属学报, 1996, 32(3): 333-33.
[15] ZHANG Peng;CUI Jianzhong;ZHANG Qizhi;DU Yunhui;FU Jiangtao;BA Limin (Northeastern University;Shenyang 110006)(Manuscript received 1996-05-21;in revised form 1996-07-11). ARTIFICIAL NEURAL NETWORKS APPLIED TO INVESTIGATION ON SOLID-LIQUID PRESSURE BONDING OF STAINLESS STEEL AND ALUMINIUM[J]. 金属学报, 1996, 32(12): 1275-1278.
No Suggested Reading articles found!