|
|
Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy |
ZHANG Lu1,2( ), YU Zhiwei1,2, ZHANG Leicheng1,2, JIANG Rong1,2, SONG Yingdong1,2,3 |
1Key Laboratory of Aero-Engine Thermal Environment and Structure, Ministry of Industry and Information Technology, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 2Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 3State Key Laboratory of Mechanics and Control Mechanical Structures, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
|
Cite this article:
ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy. Acta Metall Sin, 2023, 59(7): 871-883.
|
Abstract Under complex cyclic force/thermal multifield coupled service conditions, one of the most common failure types of aeroengine turbine disks is thermo-mechanical fatigue (TMF) failure. In metallurgy, petrochemicals, nuclear energy, aviation, and other industries, the GH4169 superalloy is frequently used. To further enrich the fatigue performance data of this alloy, in-phase (IP) and out-of-phase (OP) TMF tests were conducted on the nickel-based superalloy GH4169 at 0.6% and 0.8% strain amplitudes with temperature cycling from 350oC to 650oC. The TMF hysteresis loops, cyclic stress response behavior, fatigue crack initiation, propagation behavior, and fatigue life were analyzed. The experimental results show that the TMF stress-strain curves show tensile-compression stress asymmetry, and there is obvious cyclic softening in the high-temperature half-cycle. The TMF life is shorter than the isothermal fatigue life at the peak temperature under the same strain amplitude. Moreover, the increase of strain amplitude leads to the increase of cyclic deformation and reduces the fatigue life. The fracture analysis and the results show that the OP TMF cracks display transgranular fracture, while the IP TMF cracks show intergranular fracture. Finally, the TMF cyclic deformation behavior was simulated using the Chaboche viscoplastic model, and the simulation results were consistent with the experimental results, reflecting the basic characteristics of TMF.
|
Received: 01 March 2022
|
|
Fund: Natural Science Foundation of Jiangsu Province(BK20200450);China Postdoctoral Science Foundation(2020TQ0144) |
Corresponding Authors:
ZHANG Lu, Tel: 13718439010, E-mail: luzhang@nuaa.edu.cn
|
1 |
Jung A, Schnell A. Crack growth in a coated gas turbine superalloy under thermo-mechanical fatigue [J]. Int. J. Fatigue, 2008, 30: 286
doi: 10.1016/j.ijfatigue.2007.01.040
|
2 |
Amaro R L, Antolovich S D, Neu R W, et al. Thermomechanical fatigue and bithermal-thermomechanical fatigue of a nickel-base single crystal superalloy [J]. Int. J. Fatigue, 2012, 42: 165
doi: 10.1016/j.ijfatigue.2011.08.017
|
3 |
Vöse F, Becker M, Fischersworring-Bunk A, et al. An approach to life prediction for a nickel-base superalloy under isothermal and thermo-mechanical loading conditions [J]. Int. J. Fatigue, 2013, 53: 49
doi: 10.1016/j.ijfatigue.2011.10.018
|
4 |
Lancaster R J, Whittaker M T, Williams S J. A review of thermo-mechanical fatigue behaviour in polycrystalline nickel superalloys for turbine disc applications [J]. Mater. High Temp., 2013, 30: 2
doi: 10.3184/096034013X13630238172260
|
5 |
Amaro R L, Antolovich S D, Neu R W. Mechanism-based life model for out-of-phase thermomechanical fatigue in single crystal Ni-base superalloys [J]. Fatigue Fract. Eng. Mater. Struct., 2012, 35: 658
doi: 10.1111/ffe.2012.35.issue-7
|
6 |
Wang R Q, Jiang K H, Jing F L, et al. Thermomechanical fatigue failure investigation on a single crystal nickel superalloy turbine blade [J]. Eng. Fail. Anal., 2016, 66: 284
doi: 10.1016/j.engfailanal.2016.04.016
|
7 |
Jiang K H, Chen J W, Jing F L, et al. Thermomechanical fatigue on the nickel based single crystal superalloy DD6 with film cooling hole [J]. J. Aerosp. Power, 2019, 34: 980
|
|
蒋康河, 陈竞炜, 荆甫雷 等. 镍基单晶高温合金DD6气膜孔热机械疲劳试验 [J]. 航空动力学报, 2019, 34: 980
|
8 |
Zhang G D, Liu S L, He Y H, et al. Thermal-mechanical fatigue and isothermal low cycle fatigue fracture behavior of powder metallurgy superalloy FGH95 [J]. J. Aerosp. Power, 2005, 20: 73
|
|
张国栋, 刘绍伦, 何玉怀 等. FGH95粉末盘材料热/机械疲劳和等温低周疲劳断裂行为研究 [J]. 航空动力学报, 2005, 20: 73
|
9 |
Jones J, Whittaker M, Lancaster R, et al. The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading [J]. Int. J. Fatigue, 2020, 135: 105539
doi: 10.1016/j.ijfatigue.2020.105539
|
10 |
Hu X A, Shi D Q, Yang X G, et al. TMF constitutive and life modeling: From smooth specimen to turbine blade [J]. Acta Aeronaut. Astronaut. Sin., 2019, 40: 258
|
|
胡晓安, 石多奇, 杨晓光 等. TMF本构和寿命模型: 从光棒到涡轮叶片 [J]. 航空学报, 2019, 40: 258
|
11 |
Palmert F, Moverare J, Gustafsson D. Thermomechanical fatigue crack growth in a single crystal nickel base superalloy [J]. Int. J. Fatigue, 2019, 122: 184
doi: 10.1016/j.ijfatigue.2019.01.014
|
12 |
Norman V, Stekovic S, Jones J, et al. On the mechanistic difference between in-phase and out-of-phase thermo-mechanical fatigue crack growth [J]. Int. J. Fatigue, 2020, 135: 105528
doi: 10.1016/j.ijfatigue.2020.105528
|
13 |
Guth S, Doll S, Lang K H. Influence of phase angle on lifetime, cyclic deformation and damage behavior of Mar-M247 LC under thermo-mechanical fatigue [J]. Mater. Sci. Eng., 2015, A642: 42
|
14 |
Jones J, Whittaker M, Lancaster R, et al. The influence of phase angle, strain range and peak cycle temperature on the TMF crack initiation behaviour and damage mechanisms of the nickel-based superalloy, RR1000 [J]. Int. J. Fatigue, 2017, 98: 279
doi: 10.1016/j.ijfatigue.2017.01.036
|
15 |
Deng W K, Xu J H, Jiang L. Thermo-mechanical fatigue behavior of Inconel 718 superalloy [J]. Chin. J. Nonferrous Met., 2019, 29: 983
|
|
邓文凯, 徐睛昊, 江 亮. IN718镍基高温合金的热机械疲劳性能 [J]. 中国有色金属学报, 2019, 29: 983
|
16 |
He L Z, Zheng Q, Sun X F, et al. High temperature low cycle fatigue behavior of Ni-base superalloy M963 [J]. Mater. Sci. Eng., 2005, A402: 33
|
17 |
Neu R W, Sehitoglu H. Thermomechanical fatigue, oxidation, and creep: Part I. Damage mechanisms [J]. Metall. Trans., 1989, 20A: 1755
|
18 |
Boismier D A, Sehitoglu H. Thermo-mechanical fatigue of mar-M247: Part 1—Experiments [J]. J. Eng. Mater. Technol., 1990, 112: 68
doi: 10.1115/1.2903189
|
19 |
Wang J J, Shang D G, Sun Y J, et al. Thermo-mechanical fatigue life prediction method under multiaxial variable amplitude loading [J]. Int. J. Fatigue, 2019, 127: 382
doi: 10.1016/j.ijfatigue.2019.06.026
|
20 |
Li D H, Shang D G, Zhang C C, et al. Thermo-mechanical fatigue damage behavior for Ni-based superalloy under axial-torsional loading [J]. Mater. Sci. Eng., 2018, A719: 61
|
21 |
Wang R Z, Zhu S P, Wang J, et al. High temperature fatigue and creep-fatigue behaviors in a Ni-based superalloy: Damage mechanisms and life assessment [J]. Int. J. Fatigue, 2019, 118: 8
doi: 10.1016/j.ijfatigue.2018.05.008
|
22 |
Deng W K, Xu J H, Hu Y M, et al. Isothermal and thermomechanical fatigue behavior of Inconel 718 superalloy [J]. Mater. Sci. Eng., 2019, A742: 813
|
23 |
Kovan V, Hammer J, Mai R, et al. Thermal-mechanical fatigue behaviour and life prediction of oxide dispersion strengthened nickel-based superalloy PM1000 [J]. Mater. Charact., 2008, 59: 1600
doi: 10.1016/j.matchar.2008.02.004
|
24 |
Jing F L, Jiang K H, Zhang B, et al. Experiment on thermomechanical fatigue in nickel based single crystal superalloy DD6 [J]. J. Aerosp. Power, 2018, 33: 2965
|
|
荆甫雷, 蒋康河, 张 斌 等. 镍基单晶高温合金DD6热机械疲劳试验 [J]. 航空动力学报, 2018, 33: 2965
|
25 |
Zhang B, Wang R Q, Hu D Y, et al. Coupling damage based lifetime prediction of in-phase thermomechanical fatigue in nickel-based single crystal superalloy DD6 [J]. Rare Met. Mater. Eng., 2019, 48: 3889
|
|
张 斌, 王荣桥, 胡殿印 等. 基于耦合损伤的镍基单晶高温合金DD6同相热机械疲劳寿命预测 [J]. 稀有金属材料与工程, 2019, 48: 3889
|
26 |
Jing F L, Wang R Q, Hu D Y. A thermo-mechanical fatigue life assessment method for single crystal turbine blades [J]. J. Aerosp. Power, 2016, 31: 299
|
|
荆甫雷, 王荣桥, 胡殿印. 一种单晶涡轮叶片热机械疲劳寿命评估方法 [J]. 航空动力学报, 2016, 31: 299
|
27 |
Chaboche J L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity [J]. Int. J. Plast., 1989, 5: 247
doi: 10.1016/0749-6419(89)90015-6
|
28 |
Chaboche J L. A review of some plasticity and viscoplasticity constitutive theories [J]. Int. J. Plast., 2008, 24: 1642
doi: 10.1016/j.ijplas.2008.03.009
|
29 |
Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152
doi: 10.1016/j.actamat.2009.10.058
|
30 |
Sabnis P A, Forest S, Arakere N K, et al. Crystal plasticity analysis of cylindrical indentation on a Ni-base single crystal superalloy [J]. Int. J. Plast., 2013, 51: 200
doi: 10.1016/j.ijplas.2013.05.004
|
31 |
Prager W. A new method of analyzing stresses and strains in work-hardening plastic solids [J]. J. Appl. Mech, 1956, 23: 493
doi: 10.1115/1.4011389
|
32 |
Perzyna P. The constitutive equations for rate sensitive plastic materials [J]. Quart. Appl. Math., 1963, 20: 321
doi: 10.1090/qam/1963-20-04
|
33 |
Bodner S R, Partom Y. Constitutive equations for elastic-viscoplastic strain-hardening materials [J]. J. Appl. Mech., 1975, 42: 385
doi: 10.1115/1.3423586
|
34 |
Hu X A, Zhao G L, Yang X G, et al. Finite element analysis and life modeling of a notched superalloy under thermal mechanical fatigue loading [J]. Int. J. Press. Vessel Pip., 2018, 165: 51
doi: 10.1016/j.ijpvp.2018.06.004
|
35 |
Liu F L. Research on thermomechanical fatigue behavior and life prediction approaches of nickel-based superalloy [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019
|
|
刘飞龙. 镍基高温合金热机械疲劳行为及寿命预测方法研究 [D]. 南京: 南京航空航天大学, 2019
|
36 |
Yao L L. Experimental study on creep-fatigue interaction behavior of GH4169 [D]. Shanghai: East China University of Science and Technology, 2015
|
|
姚亮亮. 镍基高温合金GH4169蠕变-疲劳交互作用试验研究 [D]. 上海: 华东理工大学, 2015
|
37 |
Liu L L, Hu D Y, Li D, et al. Effect of grain size on low cycle fatigue life in compressor disc superalloy GH4169 at 600oC [J]. Procedia Struct Integr., 2017, 7: 174
doi: 10.1016/j.prostr.2017.11.075
|
38 |
Li D H, Shang D G, Xue L, et al. Real-time damage evaluation method for multiaxial thermo-mechanical fatigue under variable amplitude loading [J]. Eng. Fract. Mech., 2020, 229: 106948
doi: 10.1016/j.engfracmech.2020.106948
|
39 |
Chaboche J L, Rousselier G. On the plastic and viscoplastic constitutive equations—Part I: Rules developed with internal variable concept [J]. J. Press. Vessel Technol., 1983, 105: 153
doi: 10.1115/1.3264257
|
40 |
Hyde C J, Sun W, Hyde T H, et al. Thermo-mechanical fatigue testing and simulation using a viscoplasticity model for a P91 steel [J]. Comput. Mater. Sci., 2012, 56: 29
doi: 10.1016/j.commatsci.2012.01.006
|
41 |
Yang X G, Shi D Q. Viscoplastic Constitutive Theory and Application [M]. Beijing: National Defense Industry Press, 2013: 6
|
|
杨晓光, 石多奇. 粘塑性本构理论及其应用 [M]. 北京: 国防工业出版社, 2013: 6
|
42 |
Dunne F, Petrinic N. Introduction to Computational Plasticity [M]. Oxford: Oxford University Press, 2005: 8
|
43 |
Saad A A, Hyde C J, Sun W, et al. Thermal-mechanical fatigue simulation of a P91 steel in a temperature range of 400-600°C [J]. Mater. High Temp., 2011, 28: 212
doi: 10.3184/096034011X13072954674044
|
44 |
Yao L L, Zhang X C, Liu F, et al. High-temperature low-cycle fatigue properties of GH4169 Ni-based superalloy [J]. Mater. Mech. Eng., 2016, 40: 25
|
|
姚亮亮, 张显程, 刘 峰 等. GH4169镍基高温合金的高温低周疲劳性能 [J]. 机械工程材料, 2016, 40: 25
|
45 |
Wei D S, Yang X G. Investigation and modeling of low cycle fatigue behaviors of two Ni-based superalloys under dwell conditions [J]. Int. J. Press. Vessel Pip., 2009, 86: 616
doi: 10.1016/j.ijpvp.2009.04.002
|
46 |
Lei D, Zhao J H, Gong M, et al. On the energy dissipation in fatigue process and fatigue life prediction [J]. J. Exp. Mech., 2008, 23: 434
|
|
雷 冬, 赵建华, 龚 明 等. 疲劳过程中的能量耗散和疲劳寿命的预测 [J]. 实验力学, 2008, 23: 434
|
47 |
Zhang W T, Jiang R, Zhao Y, et al. Effects of temperature and microstructure on low cycle fatigue behaviour of a PM Ni-based superalloy: EBSD assessment and crystal plasticity simulation [J]. Int. J. Fatigue, 2022, 159: 106818
doi: 10.1016/j.ijfatigue.2022.106818
|
48 |
Yao P. Finite element simulation of the creep-fatigue behavior of a GH4169 gas turbine disk and its life prediction [D]. Shanghai: East China University of Science and Technology, 2018
|
|
姚 萍. GH4169航空涡轮盘蠕变-疲劳行为有限元模拟和寿命预测 [D]. 上海: 华东理工大学, 2018
|
49 |
Jiang R, Proprentner D, Callisti M, et al. Role of oxygen in enhanced fatigue cracking in a PM Ni-based superalloy: Stress assisted grain boundary oxidation or dynamic embrittlment? [J]. Corros. Sci., 2018, 139: 141
doi: 10.1016/j.corsci.2018.05.001
|
50 |
Jiang R, Reed P A S. Critical assessment 21: Oxygen-assisted fatigue crack propagation in turbine disc superalloys [J]. Mater. Sci. Technol., 2016, 32: 401
|
51 |
Wang M Q, Du J H, Deng Q. The influence of oxygen partial pressure on the crack propagation of superalloy under fatigue-creep-environment interaction [J]. Mater. Sci. Eng., 2021, A812: 140903
|
52 |
Hong H U, Kang J G, Choi B G, et al. A comparative study on thermomechanical and low cycle fatigue failures of a single crystal nickel-based superalloy [J]. Int. J. Fatigue, 2011, 33: 1592
doi: 10.1016/j.ijfatigue.2011.07.009
|
53 |
Zhang G D, He Y H, Su B. Thermal-mechanical fatigue performance of powder metallurgy superalloy FGH95 and FGH96 [J]. J. Aeron. Mater., 2011, 31: 96
|
|
张国栋, 何玉怀, 苏 彬. 粉末高温合金FGH95和FGH96的热机械疲劳性能 [J]. 航空材料学报, 2011, 31: 96
|
54 |
Jiang R, Zhang L C, Zhang W T, et al. Low cycle fatigue and stress relaxation behaviours of powder metallurgy Ni-based superalloy FGH4098 [J]. Mater. Sci. Eng., 2021, A817: 141421
|
55 |
Zhang L, Zhao L G, Roy A, et al. Low-cycle fatigue of single crystal nickel-based superalloy—Mechanical testing and TEM characterisation [J]. Mater. Sci. Eng., 2019, A744: 538
|
56 |
Chen G, Zhang Y, Xu D K, et al. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650°C [J]. Mater. Sci. Eng., 2016, A655:175
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|