Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (7): 871-883    DOI: 10.11900/0412.1961.2022.00081
Research paper Current Issue | Archive | Adv Search |
Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy
ZHANG Lu1,2(), YU Zhiwei1,2, ZHANG Leicheng1,2, JIANG Rong1,2, SONG Yingdong1,2,3
1Key Laboratory of Aero-Engine Thermal Environment and Structure, Ministry of Industry and Information Technology, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3State Key Laboratory of Mechanics and Control Mechanical Structures, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Cite this article: 

ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy. Acta Metall Sin, 2023, 59(7): 871-883.

Download:  HTML  PDF(4783KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Under complex cyclic force/thermal multifield coupled service conditions, one of the most common failure types of aeroengine turbine disks is thermo-mechanical fatigue (TMF) failure. In metallurgy, petrochemicals, nuclear energy, aviation, and other industries, the GH4169 superalloy is frequently used. To further enrich the fatigue performance data of this alloy, in-phase (IP) and out-of-phase (OP) TMF tests were conducted on the nickel-based superalloy GH4169 at 0.6% and 0.8% strain amplitudes with temperature cycling from 350oC to 650oC. The TMF hysteresis loops, cyclic stress response behavior, fatigue crack initiation, propagation behavior, and fatigue life were analyzed. The experimental results show that the TMF stress-strain curves show tensile-compression stress asymmetry, and there is obvious cyclic softening in the high-temperature half-cycle. The TMF life is shorter than the isothermal fatigue life at the peak temperature under the same strain amplitude. Moreover, the increase of strain amplitude leads to the increase of cyclic deformation and reduces the fatigue life. The fracture analysis and the results show that the OP TMF cracks display transgranular fracture, while the IP TMF cracks show intergranular fracture. Finally, the TMF cyclic deformation behavior was simulated using the Chaboche viscoplastic model, and the simulation results were consistent with the experimental results, reflecting the basic characteristics of TMF.

Key words:  Ni-based superalloy      thermo-mechanical fatigue      cyclic deformation      viscoplastic model      finite element simulation     
Received:  01 March 2022     
ZTFLH:  TG111.8  
Fund: Natural Science Foundation of Jiangsu Province(BK20200450);China Postdoctoral Science Foundation(2020TQ0144)
Corresponding Authors:  ZHANG Lu, Tel: 13718439010, E-mail: luzhang@nuaa.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00081     OR     https://www.ams.org.cn/EN/Y2023/V59/I7/871

Fig.1  Initial microstructure of GH4169 superalloy
Fig.2  Schematic of dimension of specimen (unit: mm)
Fig.3  Schematic of thermo-mechanical fatigue (TMF) test system
Fig.4  Triangular loading waveforms of GH4169 superalloy TMF test at IP 0.6% (a), OP 0.6% (b), IP 0.8% (c), and OP 0.8% (d) (IP—in-phase; OP—out-of-phase; 0.6%, 0.8%—strain amplitudes)
Fig.5  Schematics of isotropic (a) and nonlinear kinematic (b) hardening behaviors (σ1, σ2, σ3—principal stress space coordinates; σy0—initial yield stress; R—increase in size of yield surface; σ—stress; εin—inelastic strain; χ—back stress; C—kinematic hardening modulus; γ—kinematic har-dening parameter)
Fig.6  Comparisons of GH4169 superalloy TMF lives and isothermal low cycle fatigue (LCF) lives[44,45](Nf—fatigue life)
Fig.7  GH4169 superalloy TMF hysteresis loops (a, c, e, g), and peak, valley, and average stress evolution curves with cycle number (b, d, f, h) at IP 0.6% (a, b), OP 0.6% (c, d), IP 0.8% (e, f), and OP 0.8% (g, h)
Fig.8  GH4169 superalloy dissipative energy densities and TMF lives under different loading conditions
Fig.9  TMF fracture morphologies of GH4169 superalloy at IP 0.6% (CIS—crack initiation sources, CPR—crack propagation region, TFR—transient fracture region, SC—secondary crack)
(a) overall fracture morphology (b, c) CIS (d) TFR
Fig.10  TMF fracture morphologies of GH4169 superalloy at OP 0.6% (FS—fatigue strip)
(a) overall fracture morphology (b, c) CIS (d) CPR
Fig.11  TMF fracture morphologies of GH4169 superalloy at IP 0.8% (GB—grain boundary)
(a) overall fracture morphology (b, c) CIS (d) CPR
Fig.12  TMF fracture morphologies of GH4169 superalloy at OP 0.8%
(a) overall fracture morphology (b, c) CIS (d) CPR
T / oCC1 / MPaC2 / MPaγ1γ2E / MPaZ / MPa[35]σy0 / MPan[35]b[35]Q / MPaA / s-1nc[48]
300131241840842911861592009415733.615.51-2508.23exp(-22)5.77
550142188919563422661526009025593.913.86-320
6501381051004503453051459008935184.013.20-380
Table 1  Parameters of the Chaboche viscoplastic model for GH4169 superalloy at different temperatures[35,48]
Fig.13  Comparisons of simulation and experimental results of TMF hysteresis loops of GH4169 superalloy at IP 0.6% (a), IP 0.8% (b), OP 0.6% (c) and OP 0.8% (d) (Exp.—experimental, Sim.—simulation)
1 Jung A, Schnell A. Crack growth in a coated gas turbine superalloy under thermo-mechanical fatigue [J]. Int. J. Fatigue, 2008, 30: 286
doi: 10.1016/j.ijfatigue.2007.01.040
2 Amaro R L, Antolovich S D, Neu R W, et al. Thermomechanical fatigue and bithermal-thermomechanical fatigue of a nickel-base single crystal superalloy [J]. Int. J. Fatigue, 2012, 42: 165
doi: 10.1016/j.ijfatigue.2011.08.017
3 Vöse F, Becker M, Fischersworring-Bunk A, et al. An approach to life prediction for a nickel-base superalloy under isothermal and thermo-mechanical loading conditions [J]. Int. J. Fatigue, 2013, 53: 49
doi: 10.1016/j.ijfatigue.2011.10.018
4 Lancaster R J, Whittaker M T, Williams S J. A review of thermo-mechanical fatigue behaviour in polycrystalline nickel superalloys for turbine disc applications [J]. Mater. High Temp., 2013, 30: 2
doi: 10.3184/096034013X13630238172260
5 Amaro R L, Antolovich S D, Neu R W. Mechanism-based life model for out-of-phase thermomechanical fatigue in single crystal Ni-base superalloys [J]. Fatigue Fract. Eng. Mater. Struct., 2012, 35: 658
doi: 10.1111/ffe.2012.35.issue-7
6 Wang R Q, Jiang K H, Jing F L, et al. Thermomechanical fatigue failure investigation on a single crystal nickel superalloy turbine blade [J]. Eng. Fail. Anal., 2016, 66: 284
doi: 10.1016/j.engfailanal.2016.04.016
7 Jiang K H, Chen J W, Jing F L, et al. Thermomechanical fatigue on the nickel based single crystal superalloy DD6 with film cooling hole [J]. J. Aerosp. Power, 2019, 34: 980
蒋康河, 陈竞炜, 荆甫雷 等. 镍基单晶高温合金DD6气膜孔热机械疲劳试验 [J]. 航空动力学报, 2019, 34: 980
8 Zhang G D, Liu S L, He Y H, et al. Thermal-mechanical fatigue and isothermal low cycle fatigue fracture behavior of powder metallurgy superalloy FGH95 [J]. J. Aerosp. Power, 2005, 20: 73
张国栋, 刘绍伦, 何玉怀 等. FGH95粉末盘材料热/机械疲劳和等温低周疲劳断裂行为研究 [J]. 航空动力学报, 2005, 20: 73
9 Jones J, Whittaker M, Lancaster R, et al. The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading [J]. Int. J. Fatigue, 2020, 135: 105539
doi: 10.1016/j.ijfatigue.2020.105539
10 Hu X A, Shi D Q, Yang X G, et al. TMF constitutive and life modeling: From smooth specimen to turbine blade [J]. Acta Aeronaut. Astronaut. Sin., 2019, 40: 258
胡晓安, 石多奇, 杨晓光 等. TMF本构和寿命模型: 从光棒到涡轮叶片 [J]. 航空学报, 2019, 40: 258
11 Palmert F, Moverare J, Gustafsson D. Thermomechanical fatigue crack growth in a single crystal nickel base superalloy [J]. Int. J. Fatigue, 2019, 122: 184
doi: 10.1016/j.ijfatigue.2019.01.014
12 Norman V, Stekovic S, Jones J, et al. On the mechanistic difference between in-phase and out-of-phase thermo-mechanical fatigue crack growth [J]. Int. J. Fatigue, 2020, 135: 105528
doi: 10.1016/j.ijfatigue.2020.105528
13 Guth S, Doll S, Lang K H. Influence of phase angle on lifetime, cyclic deformation and damage behavior of Mar-M247 LC under thermo-mechanical fatigue [J]. Mater. Sci. Eng., 2015, A642: 42
14 Jones J, Whittaker M, Lancaster R, et al. The influence of phase angle, strain range and peak cycle temperature on the TMF crack initiation behaviour and damage mechanisms of the nickel-based superalloy, RR1000 [J]. Int. J. Fatigue, 2017, 98: 279
doi: 10.1016/j.ijfatigue.2017.01.036
15 Deng W K, Xu J H, Jiang L. Thermo-mechanical fatigue behavior of Inconel 718 superalloy [J]. Chin. J. Nonferrous Met., 2019, 29: 983
邓文凯, 徐睛昊, 江 亮. IN718镍基高温合金的热机械疲劳性能 [J]. 中国有色金属学报, 2019, 29: 983
16 He L Z, Zheng Q, Sun X F, et al. High temperature low cycle fatigue behavior of Ni-base superalloy M963 [J]. Mater. Sci. Eng., 2005, A402: 33
17 Neu R W, Sehitoglu H. Thermomechanical fatigue, oxidation, and creep: Part I. Damage mechanisms [J]. Metall. Trans., 1989, 20A: 1755
18 Boismier D A, Sehitoglu H. Thermo-mechanical fatigue of mar-M247: Part 1—Experiments [J]. J. Eng. Mater. Technol., 1990, 112: 68
doi: 10.1115/1.2903189
19 Wang J J, Shang D G, Sun Y J, et al. Thermo-mechanical fatigue life prediction method under multiaxial variable amplitude loading [J]. Int. J. Fatigue, 2019, 127: 382
doi: 10.1016/j.ijfatigue.2019.06.026
20 Li D H, Shang D G, Zhang C C, et al. Thermo-mechanical fatigue damage behavior for Ni-based superalloy under axial-torsional loading [J]. Mater. Sci. Eng., 2018, A719: 61
21 Wang R Z, Zhu S P, Wang J, et al. High temperature fatigue and creep-fatigue behaviors in a Ni-based superalloy: Damage mechanisms and life assessment [J]. Int. J. Fatigue, 2019, 118: 8
doi: 10.1016/j.ijfatigue.2018.05.008
22 Deng W K, Xu J H, Hu Y M, et al. Isothermal and thermomechanical fatigue behavior of Inconel 718 superalloy [J]. Mater. Sci. Eng., 2019, A742: 813
23 Kovan V, Hammer J, Mai R, et al. Thermal-mechanical fatigue behaviour and life prediction of oxide dispersion strengthened nickel-based superalloy PM1000 [J]. Mater. Charact., 2008, 59: 1600
doi: 10.1016/j.matchar.2008.02.004
24 Jing F L, Jiang K H, Zhang B, et al. Experiment on thermomechanical fatigue in nickel based single crystal superalloy DD6 [J]. J. Aerosp. Power, 2018, 33: 2965
荆甫雷, 蒋康河, 张 斌 等. 镍基单晶高温合金DD6热机械疲劳试验 [J]. 航空动力学报, 2018, 33: 2965
25 Zhang B, Wang R Q, Hu D Y, et al. Coupling damage based lifetime prediction of in-phase thermomechanical fatigue in nickel-based single crystal superalloy DD6 [J]. Rare Met. Mater. Eng., 2019, 48: 3889
张 斌, 王荣桥, 胡殿印 等. 基于耦合损伤的镍基单晶高温合金DD6同相热机械疲劳寿命预测 [J]. 稀有金属材料与工程, 2019, 48: 3889
26 Jing F L, Wang R Q, Hu D Y. A thermo-mechanical fatigue life assessment method for single crystal turbine blades [J]. J. Aerosp. Power, 2016, 31: 299
荆甫雷, 王荣桥, 胡殿印. 一种单晶涡轮叶片热机械疲劳寿命评估方法 [J]. 航空动力学报, 2016, 31: 299
27 Chaboche J L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity [J]. Int. J. Plast., 1989, 5: 247
doi: 10.1016/0749-6419(89)90015-6
28 Chaboche J L. A review of some plasticity and viscoplasticity constitutive theories [J]. Int. J. Plast., 2008, 24: 1642
doi: 10.1016/j.ijplas.2008.03.009
29 Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152
doi: 10.1016/j.actamat.2009.10.058
30 Sabnis P A, Forest S, Arakere N K, et al. Crystal plasticity analysis of cylindrical indentation on a Ni-base single crystal superalloy [J]. Int. J. Plast., 2013, 51: 200
doi: 10.1016/j.ijplas.2013.05.004
31 Prager W. A new method of analyzing stresses and strains in work-hardening plastic solids [J]. J. Appl. Mech, 1956, 23: 493
doi: 10.1115/1.4011389
32 Perzyna P. The constitutive equations for rate sensitive plastic materials [J]. Quart. Appl. Math., 1963, 20: 321
doi: 10.1090/qam/1963-20-04
33 Bodner S R, Partom Y. Constitutive equations for elastic-viscoplastic strain-hardening materials [J]. J. Appl. Mech., 1975, 42: 385
doi: 10.1115/1.3423586
34 Hu X A, Zhao G L, Yang X G, et al. Finite element analysis and life modeling of a notched superalloy under thermal mechanical fatigue loading [J]. Int. J. Press. Vessel Pip., 2018, 165: 51
doi: 10.1016/j.ijpvp.2018.06.004
35 Liu F L. Research on thermomechanical fatigue behavior and life prediction approaches of nickel-based superalloy [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019
刘飞龙. 镍基高温合金热机械疲劳行为及寿命预测方法研究 [D]. 南京: 南京航空航天大学, 2019
36 Yao L L. Experimental study on creep-fatigue interaction behavior of GH4169 [D]. Shanghai: East China University of Science and Technology, 2015
姚亮亮. 镍基高温合金GH4169蠕变-疲劳交互作用试验研究 [D]. 上海: 华东理工大学, 2015
37 Liu L L, Hu D Y, Li D, et al. Effect of grain size on low cycle fatigue life in compressor disc superalloy GH4169 at 600oC [J]. Procedia Struct Integr., 2017, 7: 174
doi: 10.1016/j.prostr.2017.11.075
38 Li D H, Shang D G, Xue L, et al. Real-time damage evaluation method for multiaxial thermo-mechanical fatigue under variable amplitude loading [J]. Eng. Fract. Mech., 2020, 229: 106948
doi: 10.1016/j.engfracmech.2020.106948
39 Chaboche J L, Rousselier G. On the plastic and viscoplastic constitutive equations—Part I: Rules developed with internal variable concept [J]. J. Press. Vessel Technol., 1983, 105: 153
doi: 10.1115/1.3264257
40 Hyde C J, Sun W, Hyde T H, et al. Thermo-mechanical fatigue testing and simulation using a viscoplasticity model for a P91 steel [J]. Comput. Mater. Sci., 2012, 56: 29
doi: 10.1016/j.commatsci.2012.01.006
41 Yang X G, Shi D Q. Viscoplastic Constitutive Theory and Application [M]. Beijing: National Defense Industry Press, 2013: 6
杨晓光, 石多奇. 粘塑性本构理论及其应用 [M]. 北京: 国防工业出版社, 2013: 6
42 Dunne F, Petrinic N. Introduction to Computational Plasticity [M]. Oxford: Oxford University Press, 2005: 8
43 Saad A A, Hyde C J, Sun W, et al. Thermal-mechanical fatigue simulation of a P91 steel in a temperature range of 400-600°C [J]. Mater. High Temp., 2011, 28: 212
doi: 10.3184/096034011X13072954674044
44 Yao L L, Zhang X C, Liu F, et al. High-temperature low-cycle fatigue properties of GH4169 Ni-based superalloy [J]. Mater. Mech. Eng., 2016, 40: 25
姚亮亮, 张显程, 刘 峰 等. GH4169镍基高温合金的高温低周疲劳性能 [J]. 机械工程材料, 2016, 40: 25
45 Wei D S, Yang X G. Investigation and modeling of low cycle fatigue behaviors of two Ni-based superalloys under dwell conditions [J]. Int. J. Press. Vessel Pip., 2009, 86: 616
doi: 10.1016/j.ijpvp.2009.04.002
46 Lei D, Zhao J H, Gong M, et al. On the energy dissipation in fatigue process and fatigue life prediction [J]. J. Exp. Mech., 2008, 23: 434
雷 冬, 赵建华, 龚 明 等. 疲劳过程中的能量耗散和疲劳寿命的预测 [J]. 实验力学, 2008, 23: 434
47 Zhang W T, Jiang R, Zhao Y, et al. Effects of temperature and microstructure on low cycle fatigue behaviour of a PM Ni-based superalloy: EBSD assessment and crystal plasticity simulation [J]. Int. J. Fatigue, 2022, 159: 106818
doi: 10.1016/j.ijfatigue.2022.106818
48 Yao P. Finite element simulation of the creep-fatigue behavior of a GH4169 gas turbine disk and its life prediction [D]. Shanghai: East China University of Science and Technology, 2018
姚 萍. GH4169航空涡轮盘蠕变-疲劳行为有限元模拟和寿命预测 [D]. 上海: 华东理工大学, 2018
49 Jiang R, Proprentner D, Callisti M, et al. Role of oxygen in enhanced fatigue cracking in a PM Ni-based superalloy: Stress assisted grain boundary oxidation or dynamic embrittlment? [J]. Corros. Sci., 2018, 139: 141
doi: 10.1016/j.corsci.2018.05.001
50 Jiang R, Reed P A S. Critical assessment 21: Oxygen-assisted fatigue crack propagation in turbine disc superalloys [J]. Mater. Sci. Technol., 2016, 32: 401
51 Wang M Q, Du J H, Deng Q. The influence of oxygen partial pressure on the crack propagation of superalloy under fatigue-creep-environment interaction [J]. Mater. Sci. Eng., 2021, A812: 140903
52 Hong H U, Kang J G, Choi B G, et al. A comparative study on thermomechanical and low cycle fatigue failures of a single crystal nickel-based superalloy [J]. Int. J. Fatigue, 2011, 33: 1592
doi: 10.1016/j.ijfatigue.2011.07.009
53 Zhang G D, He Y H, Su B. Thermal-mechanical fatigue performance of powder metallurgy superalloy FGH95 and FGH96 [J]. J. Aeron. Mater., 2011, 31: 96
张国栋, 何玉怀, 苏 彬. 粉末高温合金FGH95和FGH96的热机械疲劳性能 [J]. 航空材料学报, 2011, 31: 96
54 Jiang R, Zhang L C, Zhang W T, et al. Low cycle fatigue and stress relaxation behaviours of powder metallurgy Ni-based superalloy FGH4098 [J]. Mater. Sci. Eng., 2021, A817: 141421
55 Zhang L, Zhao L G, Roy A, et al. Low-cycle fatigue of single crystal nickel-based superalloy—Mechanical testing and TEM characterisation [J]. Mater. Sci. Eng., 2019, A744: 538
56 Chen G, Zhang Y, Xu D K, et al. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650°C [J]. Mater. Sci. Eng., 2016, A655:175
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[5] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[6] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[7] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[8] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[9] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
[10] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[11] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[12] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[13] Weipeng REN, Qing LI, Qiang HUANG, Chengbo XIAO, Limin HE. Oxidation and Microstructure Evolution of CoAl Coating on Directionally Solidified Ni-Based Superalloys DZ466[J]. 金属学报, 2018, 54(4): 566-574.
[14] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[15] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
No Suggested Reading articles found!