Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (7): 855-870    DOI: 10.11900/0412.1961.2021.00532
Research paper Current Issue | Archive | Adv Search |
Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy
LI Fulin1,2, FU Rui1,2(), BAI Yunrui3, MENG Lingchao1,2, TAN Haibing3, ZHONG Yan3, TIAN Wei3, DU Jinhui1,2, TIAN Zhiling2
1GaoNa Aero Material Co., Ltd., Beijing 100081, China
2Central Iron and Steel Research Institute Co., Ltd., Beijing 100081, China
3AECC Sichuan Gas Turbine Research Institute, Chengdu 610400, China
Cite this article: 

LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy. Acta Metall Sin, 2023, 59(7): 855-870.

Download:  HTML  PDF(8406KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

GH4096 alloy were used for disks and shafts of advanced gas turbine engines owing to its excellent properties such as resistance to creep, fatigue, and corrosion as well as microstructure stability up to about 700oC. In this study, GH4096, a hard-to-deform disk superalloy, was processed through an advanced cast and wrought route to avoid the expensive power metallurgy (P/M) route. Many types of full-scale disk forgings possessing homogeneous fine-grained microstructures were successfully carried out, and the ultrasonic inspectability was comparative to that of the alloy produced by the P/M route. The effects of the initial grain size and strengthening phase on hot deformation behavior and dynamic recrystallization (DRX) were studied by OM, SEM, EBSD, and TEM under different deformation parameters. The results showed that as the initial grain size decreased within the temperature range of 1050-1120oC, the flow peak stresses decreased and the fractions of DRX increased. With an increase in the initial grain size, the thermal deformation temperature required for complete dynamic recrystallization decreased, and also the critical strain of dynamic recrystallization decreased. The initial grain size and the strain did not affect the recrystallized grain size when deformed at a sub-solvus temperature. The thermal deformation constitutive equations related to the initial grain sizes were established and the activation energies of thermal deformation related to the original grain sizes were calculated. The effect of γ' phase size on the thermal deformation behavior in as-cast microstructure was studied. In the sub-solvus temperature range, the thermal deformation resistance could be effectively reduced with the increase in the size of γ' phase, the critical strain of DRX was decreased, and the DRX fraction was also increased. The dynamic recrystallization mechanisms related to the γ' phase and initial grain size were also discussed. DRX nucleation takes place at the sub-grains near original grain boundaries for samples with larger initial grain size deformed at sub-solvus temperature. For samples with fine initial grain size, the interface slip of incoherent γ' phase is the significant dynamic softening mechanism during the sub-solvus temperature deformation. For as-cast samples, the main dynamic softening mechanism is original grain boundary bowing out DRX nucleation and coarse second-phase-induced DRX nucleation.

Key words:  dynamic recrystallization      initial grain size      grain boundary      strengthening phase      GH4096      hot deformation     
Received:  06 December 2021     
ZTFLH:  TG146.1  
Fund: China Postdoctoral Science Foundation(2017M6132235)
Corresponding Authors:  FU Rui, professor, Tel: (010)62182410, E-mail: furui208@sina.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00532     OR     https://www.ams.org.cn/EN/Y2023/V59/I7/855

Fig.1  OM images of d1-d4 samples with different initial grain sizes before hot deformation
(a) d1 (180 μm) (b) d2 (90 μm) (c) d3 (45 μm) (d) d4 (15 μm)
Fig.2  OM images (a, b) and SEM images of γ' phase (c, d) of as-cast samples treated by different processes before hot compression (a, c) c1 (1 μm) (b, d) c2 (2 μm)
Fig.3  True stress-strain curves (a-d) and peak stress curves (e) of samples d1-d4 under thermal compression at the strain rate of 0.1 s-1 and different temperatures
(a) 1060oC (b) 1080oC (c) 1100oC (d) 1120oC (e) comparison of peak stress
Fig.4  True stress-strain curves of the two samples c1 and c2 in the as-cast state under hot compression at the sub-solvus solution temperatures of 1060oC (a) and 1080oC (b)
Fig.5  Critical strain of dynamic recrystallization (DRX) of samples c1 and c2 in as-cast state at the strain rate of 0.1 s-1
Sample0.10.20.40.60.81.0
d10.00680.00660.00670.00700.00730.0076
d20.00730.00690.00690.00720.00780.0079
d30.00800.00790.00860.00920.00990.0098
d40.00980.00980.01040.01040.01030.0102
Table 1  ɑ values of samples d1-d4 under different true strains
Sampleα / MPa-1nQ / (kJ·mol-1)
d10.00704.641713
d20.00744.271489
d30.00874.091230
d40.00103.27400
Table 2  Average ɑ values, stress index n and thermal deformation activation energies Q of samples d1-d4
Fig.6  Peak stress of sample d2 as a function of strain rate (ε˙) (a) and temperature (T) (b)
Fig.7  Peak stress of samples d1 (a) and d2 (b) as a function of Z parameters
Fig.8  OM images of samples d1 (a, b), d2 (c, d), d3 (e, f), and d4 (g, h) under hot compression at different temperatures, the strain rate of 0.1 s-1, and the engineering strain of 50% (a, c, e, g) 1120oC (b, d, f, h) 1080oC
Fig.9  OM images of fine grained d4 sample deformed at 1100oC, 0.1 s-1 and different engineering strains
(a) 30% (b) 50% (c) 70%
Fig.10  Dynamic recrystallization critical strain of the samples d1-d4 during thermal compression
Fig.11  Grain boundary-subgrain boundary recrystallization structure evolution diagrams (a-d) and orientation analyses (e-g) of d2 sample obtained by EBSD after hot compression at 1100oC (HAGB—high angle grain boundary, LAGB—low angle grain boundary, SB—subgrain boundary) (a, e) 50% engineering strain (b, f) 70% engineering strain (c, d, g) 80% engineering strain
Fig.12  EBSD images of the grain boundary-subgrain boundary recrystallization structure of d4 sample after hot compression at 1100oC
(a) 30% engineering strain (b) 50% engineering strain
Fig.13  TEM images of coarsen grained d2 samples after hot compression at 1100oC, 0.1 s-1
(a) 30% engineering strain (b) 50% engineering strain
Fig.14  TEM images of fine grained d4 samples after hot compression at 1100oC, 0.1 s-1 and different engineering strains (SF—stacking fault)
(a) 30% engineering strain (b) 50% engineering strain (c, d) 70% engineering strain
Fig.15  EBSD images of grain boundary-subgrain boundary of cast samples c1 (a, c) and c2 (b, d) after hot compression (50%, 0.1 s-1)
(a, b) 1060oC (c, d) 1080oC
Fig.16  SEM images of c2 sample after thermal deformation at 1060oC, 50%, and 0.1 s-1, showing the interaction between γ' phase and recrystallized grains
(a) coasening of the γ' phase in the DRX grain boundary (b) DRX grains interacting with γ' phase
Fig.17  TEM images of as-cast c1 and c2 samples after hot compression 50% at 1060oC, 0.1 s-1 (a, b) c1 sample, grain boundary absorbing lots of dislocation lines (c, d) c2 sample, showing γ' stimulated DRX nucleation
1 Tian W, Zhong Y, Liu Y F, et al. Development and testing of novel casted & wrought GH4096 alloy labyrinth disk [J]. Rare Met. Mater. Eng., 2021, 50: 1325
田 伟, 钟 燕, 刘砚飞 等. 新型铸&锻GH4096合金篦齿盘研制与考核 [J]. 稀有金属材料与工程, 2021, 50: 1325
2 Reed R C. The Superalloys Fundamentals and Applications [M]. New York: Cambridge University Press, 2006: 1
3 Du J H, Zhao G P, Deng Q, et al. Development of wrought superalloy in China [J]. J. Aeronaut. Mater., 2016, 36(3): 27
杜金辉, 赵光普, 邓 群 等. 中国变形高温合金研制进展 [J]. 航空材料学报, 2016, 36(3): 27
4 Tian S F, Zhang G Q, Li Z, et al. The disk superalloys and disk manufacturing technologies for advanced aero engine [J]. J. Aeronaut. Mater., 2003, 23(suppl.1) : 233
田世藩, 张国庆, 李 周 等. 先进航空发动机涡轮盘合金及涡轮盘制造 [J]. 航空材料学报, 2003, 23(): 233
5 Fu R, Chen X C, Ren H, et al. Structure and hot deformation behavior of ESR-CDS René88DT [J]. J. Aeronaut. Mater., 2011, 31(3): 8
付 锐, 陈希春, 任 昊 等. 电渣重熔连续定向凝固René88DT合金的组织与热变形行为 [J]. 航空材料学报, 2011, 31(3): 8
6 Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China [J]. Acta Metall. Sin., 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
杜金辉, 吕旭东, 董建新 等. 国内变形高温合金研制进展 [J]. 金属学报, 2019, 55: 1115
7 Zhang R, Liu P, Cui C Y, et al. Present research situation and prospect of hot working of cast & wrought superalloys for aero-engine turbine disk in China [J]. Acta Metall. Sin., 2021, 57: 1215
doi: 10.11900/0412.1961.2021.00153
张 瑞, 刘 鹏, 崔传勇 等. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望 [J]. 金属学报, 2021, 57: 1215
8 Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
doi: 10.1016/0001-6160(66)90207-0
9 Ning Y Q, Yao Z K, Li H, et al. High temperature deformation behavior of hot isostatically pressed P/M FGH4096 superalloy [J]. Mater. Sci. Eng., 2010, A527: 961
10 Wang Y, Shao W Z, Zhen L, et al. Tensile deformation behavior of superalloy 718 at elevated temperatures [J]. J. Alloys Compd., 2009, 471: 331
doi: 10.1016/j.jallcom.2008.03.082
11 Srinivasan N, Prasad Y V R K, Rao P R. Hot deformation behaviour of Mg-3Al alloy—A study using processing map [J]. Mater. Sci. Eng., 2008, A476: 146
12 Monajati H, Taheri A K, Jahazi M, et al. Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy [J]. Metall. Mater. Trans., 2005, 36A: 895
13 Wu K, Liu G Q, Hu B F, et al. Effect of processing parameters on hot compressive deformation behavior of a new Ni-Cr-Co based P/M superalloy [J]. Mater. Sci. Eng., 2011, A528: 4620
14 Mostafaei M A, Kazeminezhad M. Hot deformation behavior of hot extruded Al-6Mg alloy [J]. Mater. Sci. Eng., 2012, A535: 216
15 Zhang M J, Li F G, Wang S Y, et al. Characterization of hot deformation behavior of a P/M nickel-base superalloy using processing map and activation energy [J]. Mater. Sci. Eng., 2010, A527: 6771
16 Samantaray D, Mandal S, Bhaduri A K. Optimization of hot working parameters for thermo-mechanical processing of modified 9Cr-1Mo (P91) steel employing dynamic materials model [J]. Mater. Sci. Eng., 2011, A528: 5204
17 Gu Y, Zhong Z, Yuan Y, et al. An advanced cast-and-wrought superalloy (TMW-4M3) for turbine disk applications beyond 700oC [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 903
18 Ning Y Q, Yao Z K, Lei Y Y, et al. Hot deformation behavior of the post-cogging FGH4096 superalloy with fine equiaxed microstructure [J]. Mater. Charact., 2011, 62: 887
doi: 10.1016/j.matchar.2011.06.004
19 Mirzadeh H, Cabrera J M, Prado J M, et al. Hot deformation behavior of a medium carbon microalloyed steel [J]. Mater. Sci. Eng., 2011, A528: 3876
20 Ozturk U, Cabrera J M, Calvo J. High-temperature deformation of inconel 718PlusTM [J]. J. Eng. Gas Turbines Power, 2017, 139: 032101
21 Huron E, Srivatsa S, Raymond E. Control of grain size via forging strain rate limits for R'88DT [A]. Superalloys 2000 [C]. Warrendale: TMS, 2000: 49
22 Zhou H T, Liu R R, Liu Z C, et al. Hot deformation characteristics of GH625 and development of a processing map [J]. J. Mater. Eng. Perform., 2013, 22: 2515
doi: 10.1007/s11665-013-0558-3
23 Wang Y, Shao W Z, Zhen L, et al. Hot deformation behavior of delta-processed superalloy 718 [J]. Mater. Sci. Eng., 2011, A528: 3218
24 Li H Y, Gao Z H, Yin H, et al. Effects of Er and Zr additions on precipitation and recrystallization of pure aluminum [J]. Scr. Mater., 2013, 68: 59
doi: 10.1016/j.scriptamat.2012.09.026
25 Ning Y Q, Yao Z K, Fu M W, et al. Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096: I. Microstructure and mechanism [J]. Mater. Sci. Eng., 2011, A528: 8065
26 Fahrmann M, Suzuki A. Effect of cooling rate on gleeble hot ductility of UDIMET alloy 720 billet [A]. Superalloys 2008 [M]. Warrendale, PA: TMS, 2008: 311
27 Wang C Y, Song X J, Zou J W, et al. Effect of original microstructure on thermal compression deformation behavior and microstructure of FGH96 alloy [J]. Hot Work. Technol., 2019, 48(11): 39
王超渊, 宋晓俊, 邹金文 等. 原始组织对FGH96合金热压缩变形行为和组织的影响 [J]. 热加工工艺, 2019, 48(11): 39
28 Zhang B J, Zhao G P, Zhang W Y, et al. Deformation mechanisms and microstructural evolution of γ + γ' duplex aggregates generated during thermomechanical processing of nickel-base superalloys [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Warrendale, PA: TMS, 2016: 487
29 Fu R, Li F L, Yin F J, et al. Microstructure evolution and deformation mechanisms of the electroslag refined-continuous directionally solidified (ESR-CDS®) superalloy Rene88DT during isothermal compression [J]. Mater. Sci. Eng., 2015, A638: 152
30 Lu X D, Du J H, Deng Q, et al. Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy [J]. J. Alloys Compd., 2009, 486: 195
doi: 10.1016/j.jallcom.2009.07.020
31 Li F L, Fu R, Yin F J, et al. Impact of γ' (Ni3(Al, Ti)) phase on dynamic recrystallization of a Ni-based disk superalloy during isothermal compression [J]. J. Alloys Compd., 2017, 693: 1076
doi: 10.1016/j.jallcom.2016.09.258
32 Liu Y. Study of hot deformation behavior of Ni-Cr-W base superalloy [D]. Xi'an: Northwestern Polytechnical University, 2010
刘 毅. Ni-Cr-W基高温合金的热变形行为研究 [D]. 西安: 西北工业大学, 2010
33 Yuan H, Liu W C. Effect of the δ phase on the hot deformation behavior of Inconel l718 [J]. Mater. Sci. Eng., 2005, A408: 281
34 Dehghan-manshadi A, Hodgson P D. Dependency of recrystallization mechanism to the initial grain size [J]. Metall. Mater. Trans., 2008, 39A: 2830
35 Belyakov A, Miura H, Sakai T. Dynamic recrystallization in ultra fine-grained 304 stainless steel [J]. Scr. Mater., 2000, 43: 21
doi: 10.1016/S1359-6462(00)00373-0
36 Oudin A, Barnett M R, Hodgson P D. Grain size effect on the warm deformation behaviour of a Ti-IF steel [J]. Mater. Sci. Eng., 2004, A367: 282
37 Fu R, Li F L, Yin F J, et al. Application of multiple integral forging in preparation of wrought superalloy FGH96 turbine disk [J]. Chin. J. Rare Met., 2017, 41: 113
付 锐, 李福林, 尹法杰 等. 多向整体锻造在变形FGH96合金涡轮盘制备中的应用 [J]. 稀有金属, 2017, 41: 113
38 Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation [J]. ISIJ Int., 2003, 43: 684
doi: 10.2355/isijinternational.43.684
39 Stewart G R, Jonas J J, Montheillet F. Kinetics and critical conditions for the initiation of dynamic recrystallization in 304 stainless Steel [J]. ISIJ Int., 2004, 44: 1581
doi: 10.2355/isijinternational.44.1581
40 Liu C, Yao Z H, Jiang H, et al. The feasibility and process control of uniform equiaxed grains by hot deformation in GH4720Li alloy with millimeter-level coarse grains [J]. Acta Metall. Sin., 2021, 57: 1309
doi: 10.11900/0412.1961.2020.00415
刘 超, 姚志浩, 江 河 等. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制 [J]. 金属学报, 2021, 57: 1309
41 Forbord B, Hallem H, Ryum N, et al. Precipitation and recrystallisation in Al-Mn-Zr with and without Sc [J]. Mater. Sci. Eng., 2004, A387-389: 936
42 Wan Z P, Wang T, Sun Y, et al. Dynamic softening mechanisms of GH4720Li alloy during hot deformation [J]. Acta Metall. Sin., 2019, 55: 213
万志鹏, 王 涛, 孙 宇 等. GH4720Li合金热变形过程动态软化机制 [J]. 金属学报, 2019, 55: 213
doi: 10.11900/0412.1961.2018.00179
43 Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. Oxford: Elsevier Science Ltd., 1995: 1
[1] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[6] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[7] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[8] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[9] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[10] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[11] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[12] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[13] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[14] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[15] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
No Suggested Reading articles found!