|
|
Unravelling the {} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy |
SHAO Xiaohong1, PENG Zhenzhen2, JIN Qianqian3, MA Xiuliang1( ) |
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China 3Center for the Structure of Advanced Matter, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China |
|
Cite this article:
SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy. Acta Metall Sin, 2023, 59(4): 556-566.
|
Abstract The effect of long-period stacking ordered (LPSO) structure/solute-rich element laminar stacking faults (SFs) on the intersection of co-zone {} twin variants was uncovered at the atomic scale by TEM. The results show that a basal-prismatic (BP) boundary is generally formed at the intersection of LPSO/SFs and twins, bending the twin boundaries (TBs) into a bow shape between the adjacent LPSO/SFs. The co-zone {} twin variants and LPSO/SFs intersect with each other, introducing a basal-basal (BB) boundary and prismatic-prismatic (PP) boundaries, associated with a triangular matrix near the LPSO/SFs. More Zn atoms than Y atoms were segregated into the TBs. Also, when the LPSO structure is kinked, the {} twin generates and grows on one side of the kink boundary, and the local kink boundary transforms into TB. The growing TB intersects with the residual kink boundary, leaving a triangular matrix near the LPSO/SFs. Multiple twin variants nucleate between the LPSO/SFs/TSFs (twinned stacking faults), and the associated Hall-Petch effect is brought by the segmentation introduced by the intersecting of variants, which can improve the Mg alloy hardening rate. Introducing different twin variants by regulating the LPSO structure's spacing and thickness in magnesium alloy may shed new light on optimizing their performance.
|
Received: 21 October 2022
|
|
Fund: National Natural Science Foundation of China(51871222);National Natural Science Foundation of China(52171021) |
Corresponding Authors:
MA Xiuliang, professor, Tel: (024)23971845, E-mail: xlma@imr.ac.cn
|
1 |
Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
|
2 |
Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa [J]. Mater. Trans., 2001, 42: 1172
doi: 10.2320/matertrans.42.1172
|
3 |
Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-ontrast STEM [J]. Acta Mater., 2002, 50: 3845
doi: 10.1016/S1359-6454(02)00191-X
|
4 |
Kawamura Y, Yamasaki M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure [J]. Mater. Trans., 2007, 48: 2986
doi: 10.2320/matertrans.MER2007142
|
5 |
Zhu Y M, Morton A J, Nie J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys [J]. Acta Mater., 2010, 58: 2936
doi: 10.1016/j.actamat.2010.01.022
|
6 |
Abe E, Ono A, Itoi T, et al. Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg-Zn-Y alloy [J]. Philos. Mag. Lett., 2011, 91: 690
doi: 10.1080/09500839.2011.609149
|
7 |
Shao X H, Yang H J, De Hosson J T M, et al. Microstructural characterization of long-period stacking ordered phases in Mg97Zn1Y2 (at. %) alloy [J]. Microsc. Microanal., 2013, 19: 1575
doi: 10.1017/S1431927613012750
|
8 |
Zhu Y M, Morton A J, Nie J F. Growth and transformation mechanisms of 18R and 14H in Mg-Y-Zn alloys [J]. Acta Mater., 2012, 60: 6562
doi: 10.1016/j.actamat.2012.08.022
|
9 |
Jin Q Q, Fang C F, Mi S B. Formation of long-period stacking ordered structures in Mg88 M5Y7 (M = Ti, Ni and Pb) casting alloys [J]. J. Alloys Compd., 2013, 568: 21
doi: 10.1016/j.jallcom.2013.03.061
|
10 |
Mi S B, Jin Q Q. New polytypes of long-period stacking ordered structures in Mg-Co-Y alloys [J]. Scr. Mater., 2013, 68: 635
doi: 10.1016/j.scriptamat.2012.12.025
|
11 |
Jin Q Q, Shao X H, Hu X B, et al. New polytypes of long-period stacking ordered structures in a near-equilibrium Mg97Zn1Y2 alloy [J]. Philos. Mag. Lett., 2017, 97: 180
doi: 10.1080/09500839.2017.1311426
|
12 |
Jin Q Q, Shao X H, Peng Z Z, et al. Crystallographic account of an ultra-long period stacking ordered phase in an Mg88Co5Y7 alloy [J]. J. Alloys Compd., 2017, 693: 1035
doi: 10.1016/j.jallcom.2016.09.279
|
13 |
Shao X H, Yang Z Q, Ma X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure [J]. Acta Mater., 2010, 58: 4760
doi: 10.1016/j.actamat.2010.05.012
|
14 |
Hagihara K, Li Z X, Yamasaki M, et al. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys [J]. Acta Mater., 2019, 163: 226
doi: 10.1016/j.actamat.2018.10.016
|
15 |
Shao X H, Peng Z Z, Jin Q Q, et al. Atomic-scale segregations at the deformation-induced symmetrical boundary in an Mg-Zn-Y alloy [J]. Acta Mater., 2016, 118: 177
doi: 10.1016/j.actamat.2016.07.054
|
16 |
Peng Z Z, Shao X H, Jin Q Q, et al. Dislocation configuration and solute redistribution of low angle kink boundaries in an extruded Mg-Zn-Y-Zr alloy [J]. Mater. Sci. Eng., 2017, A687: 211
|
17 |
Peng Z Z, Jin Q Q, Shao X H, et al. Effect of temperature on deformation mechanisms of the Mg88Co5Y7 alloy during hot compression [J]. Mater. Charact., 2019, 151: 553
doi: 10.1016/j.matchar.2019.03.049
|
18 |
Peng Z Z, Shao X H, Liang Z M, et al. Synergetic deformation mechanisms in an Mg-Zn-Y-Zr alloy with intragranular LPSO structures [J]. J. Magnes. Alloy., 2022, doi: 10.1016/j.jma.2022.09.010
|
19 |
Barnett M R. Twinning and the ductility of magnesium alloys: Part I: “Tension” twins [J]. Mater. Sci. Eng., 2007, A464: 1
|
20 |
Roberts E, Partridge P G. The accommodation around {1012}<1011> twins in magnesium [J]. Acta Metall., 1966, 14: 513
doi: 10.1016/0001-6160(66)90319-1
|
21 |
Park S H, Hong S G, Lee C S. Activation mode dependent { 10 1 ¯ 2 }<1011> twinning characteristics in a polycrystalline magnesium alloy [J]. Scr. Mater., 2010, 62: 202
doi: 10.1016/j.scriptamat.2009.10.027
|
22 |
El Kadiri H, Kapil J, Oppedal A L, et al. The effect of twin-twin interactions on the nucleation and propagation of { 10 1 ¯ 2 } twinning in magnesium [J]. Acta Mater., 2013, 61: 3549
doi: 10.1016/j.actamat.2013.02.030
|
23 |
Yu Q, Wang J, Jiang Y Y, et al. Twin-twin interactions in magnesium [J]. Acta Mater., 2014, 77: 28
doi: 10.1016/j.actamat.2014.05.030
|
24 |
Yu Q, Wang J, Jiang Y Y, et al. Co-zone { 10 1 ¯ 2 } twin interaction in magnesium single crystal [J]. Mater. Res. Lett., 2014, 2: 82
doi: 10.1080/21663831.2013.867291
|
25 |
Sun Q, Zhang X Y, Ren Y, et al. Observations on the intersection between { 10 1 ¯ 2 } twin variants sharing the same zone axis in deformed magnesium alloy [J]. Mater. Charact., 2015, 109: 160
doi: 10.1016/j.matchar.2015.09.024
|
26 |
Shi D F, Liu T M, Hou D W, et al. The effect of twin-twin interaction in Mg-3Al-1Zn alloy during compression [J]. J. Alloys Compd., 2016, 685: 428
doi: 10.1016/j.jallcom.2016.05.338
|
27 |
Chen H C, Liu T M, Xiang S H, et al. Abnormal migration of twin boundaries in rolled AZ31 alloy containing intersecting { 10 1 ¯ 2 } extension twins [J]. J. Alloys Compd., 2017, 690: 376
doi: 10.1016/j.jallcom.2016.08.154
|
28 |
Mokdad F, Chen D L, Li D Y. Single and double twin nucleation, growth, and interaction in an extruded magnesium alloy [J]. Mater. Des., 2017, 119: 376
doi: 10.1016/j.matdes.2017.01.072
|
29 |
Wang J, Yu Q, Jiang Y Y, et al. Twinning-associated boundaries in hexagonal close-packed metals [J]. JOM, 2014, 66: 95
doi: 10.1007/s11837-013-0803-0
|
30 |
Morrow B M, Cerreta E K, McCabe R J, et al. Toward understanding twin-twin interactions in hcp metals: Utilizing multiscale techniques to characterize deformation mechanisms in magnesium [J]. Mater. Sci. Eng., 2014, A613: 365
|
31 |
Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39: 1
doi: 10.1016/0079-6425(94)00007-7
|
32 |
Shao X H, Yang Z Q, Ma X L. Interplay between { 10 1 ¯ 2 } deformation twins and basal stacking faults enriched with Zn/Y in Mg97Zn1Y2 alloy [J]. Philos. Mag. Lett., 2014, 94: 150
doi: 10.1080/09500839.2014.885123
|
33 |
Shao X H, Zheng S J, Chen D, et al. Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy [J]. Sci. Rep., 2016, 6: 30096
doi: 10.1038/srep30096
pmid: 27435638
|
34 |
Shao X H, Peng Z Z, Jin Q Q, et al. Unravelling the local ring-like atomic pattern of { 10 1 ¯ 2 } twin boundary in an Mg-Zn-Y alloy [J]. Philos. Mag., 2019, 99: 306
doi: 10.1080/14786435.2018.1539262
|
35 |
Shao X H, Jin Q Q, Zhou Y T, et al. Basal shearing of twinned stacking faults and its effect on mechanical properties in an Mg-Zn-Y alloy with LPSO phase [J]. Mater. Sci. Eng., 2020, A779: 139109
|
36 |
Liu B Y, Wang J, Li B, et al. Twinning-like lattice reorientation without a crystallographic twinning plane [J]. Nat. Commun., 2014, 5: 3297
doi: 10.1038/ncomms4297
|
37 |
Nie J F, Zhu Y M, Liu J Z, et al. Periodic segregation of solute atoms in fully coherent twin boundaries [J]. Science, 2013, 340: 957
doi: 10.1126/science.1229369
pmid: 23704567
|
38 |
Shao J B, Chen Z Y, Chen T, et al. The interaction between ( 10 1 ¯ 2 ) twinning and long-period stacking ordered (LPSO) phase during hot rolling and annealing process of a Mg-Gd-Y-Zn-Zr alloy [J]. Metall. Mater. Trans., 2021, 52A: 520
|
39 |
Chen T, Chen Z Y, Shao J B, et al. Interactions between kinking and { 10 1 ¯ 2 } twinning in a Mg-Zn-Gd alloy containing long period stacking ordered (LPSO) phase [J]. Mater. Sci. Eng., 2019, A767: 138418
|
40 |
Tane M, Nagai Y, Kimizuka H, et al. Elastic properties of an Mg-Zn-Y alloy single crystal with a long-period stacking-ordered structure [J]. Acta Mater., 2013, 61: 6338
doi: 10.1016/j.actamat.2013.06.041
|
41 |
Kim K H, Jeon J B, Kim N J, et al. Role of yttrium in activation of <c + a> slip in magnesium: An atomistic approach [J]. Scr. Mater., 2015, 108: 104
doi: 10.1016/j.scriptamat.2015.06.028
|
42 |
Zhang Y, Shao J B, Chen T, et al. Deformation mechanism and dynamic recrystallization of Mg-5.6Gd-0.8Zn alloy during multi-directional forging [J]. Acta Metall. Sin., 2020, 56: 723
doi: 10.11900/0412.1961.2019.00292
|
|
张 阳, 邵建波, 陈 韬 等. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶 [J]. 金属学报, 2020, 56: 723
|
43 |
Wang L, Sabisch J, Lilleodden E T. Kink formation and concomitant twin nucleation in Mg-Y [J]. Scr. Mater., 2016, 111: 68
doi: 10.1016/j.scriptamat.2015.08.016
|
44 |
Zhang F, Ren Y, Yang Z Q, et al. The interaction of deformation twins with long-period stacking ordered precipitates in a magnesium alloy subjected to shock loading [J]. Acta Mater., 2020, 188: 203
doi: 10.1016/j.actamat.2020.01.064
|
45 |
Wang J, Beyerlein I J. Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals [J]. Model. Simul. Mater. Sci. Eng., 2012, 20: 024002
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|