|
|
Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface |
SONG Wenshuo1, SONG Zhuman2, LUO Xuemei2, ZHANG Guangping2, ZHANG Bin1( ) |
1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface. Acta Metall Sin, 2022, 58(8): 1035-1043.
|
Abstract The power industry is changing from rapid growth to high-quality development, and there are urgent demands for the high-quality and high-service reliability of overhead lines. Al-Mg-Si alloys are widely used in the production of long-distance overhead lines owing to their high strength-to-density ratio, good conductivity, and corrosion resistance. In the overhead line service, surface defects reduce their mechanical properties, and surface roughness greatly affects its fatigue properties. A single-strand conductor of 6101 aluminum alloy was employed to investigate the fatigue properties of the conductors with different roughness. The fatigue strength of the alloy wires decreased gradually with an increase in the surface roughness (maximum height of profile, Rz). As Rzincreased from 57.9 to 161.7 μm, the fatigue limit decreased by ~36.4%. The result indicates that an increase of Rz increases the theoretical stress concentration factor , which facilitates the initiation of fatigue cracks, and the fatigue strength decreases accordingly. Furthermore, the surface roughness is equivalent to the size of the initial crack = (L is the average value of the arerage width of profile element). A model suitable for predicting the fatigue life of conductors with different surface roughness was obtained.
|
Received: 28 January 2021
|
|
Fund: National Natural Science Foundation of China(51671050);National Natural Science Foundation of China(51971060) |
About author: ZHANG Bin, professor, Tel: (024)83691585, E-mail: zhangb@atm.neu.edu.cn
|
1 |
Zhao Y S, Yao H, He W, et al. Comparison between high conductivity all aluminum conductor and traditional conductor [J]. Rural Electrific., 2016, (1): 13
|
|
赵永生, 姚 辉, 何 卫 等. 高导全铝导线与传统导线的比较 [J]. 农村电气化, 2016, (1): 13
|
2 |
Jia Y J, Yang Y J, Yuan H M. Application and development of aluminum alloy conductor in China [J]. Nonferrous Met. Process., 2017, 46(3): 9
|
|
贾艳军, 杨亚军, 袁红梅. 铝合金导线在我国的应用及发展 [J]. 有色金属加工, 2017, 46(3): 9
|
3 |
Karabay S. Influence of AlB2 compound on elimination of incoherent precipitation in artificial aging of wires drawn from redraw rod extruded from billets cast of alloy AA-6101 by vertical direct chill casting [J]. Mater. Des., 2008, 29: 1364
doi: 10.1016/j.matdes.2007.06.004
|
4 |
Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors [J]. Mater. Des., 2006, 27: 821
doi: 10.1016/j.matdes.2005.06.005
|
5 |
Hu J, Zhou T G, Li Z S, et al. Production status and development prospects of Al-Mg-Si alloy conductor [J]. Light Alloy Fabric. Technol., 2018, 46(1): 5
|
|
胡 静, 周天国, 李振山 等. Al-Mg-Si合金导线的生产现状及其发展前景 [J]. 轻合金加工技术, 2018, 46(1): 5
|
6 |
Fadel A A, Rosa D, Murça L B, et al. Effect of high mean tensile stress on the fretting fatigue life of an Ibis steel reinforced aluminium conductor [J]. Int. J. Fatigue, 2012, 42: 24
doi: 10.1016/j.ijfatigue.2011.03.007
|
7 |
Kalombo R B, Martínez J M G, Ferreira J L A, et al. Comparative fatigue resistance of overhead conductors made of aluminium and aluminium alloy: Tests and analysis [J]. Procedia Eng., 2015, 133: 223
doi: 10.1016/j.proeng.2015.12.662
|
8 |
Kalombo R B, Reinke G, Miranda T B, et al. Experimental study of the fatigue performance of overhead pure aluminium cables [J]. Procedia Struct. Integ., 2019, 19: 688
|
9 |
Adriano V S R, Martínez J M G, Ferreira J L A, et al. The influence of the fatigue process zone size on fatigue life estimations performed on aluminum wires containing geometric discontinuities using the Theory of Critical Distances [J]. Theor. Appl. Fract. Mech., 2018, 97: 265
doi: 10.1016/j.tafmec.2018.09.002
|
10 |
Ås S K, Skallerud B, Tveiten B W, et al. Fatigue life prediction of machined components using finite element analysis of surface topography [J]. Int. J. Fatigue, 2005, 27: 1590
doi: 10.1016/j.ijfatigue.2005.07.031
|
11 |
McKelvey S A, Fatemi A. Surface finish effect on fatigue behavior of forged steel [J]. Int. J. Fatigue, 2012, 36: 130
doi: 10.1016/j.ijfatigue.2011.08.008
|
12 |
Novovic D, Dewes R C, Aspinwall D K, et al. The effect of machined topography and integrity on fatigue life [J]. Int. J. Mach. Tool. Manuf., 2004, 44: 125
doi: 10.1016/j.ijmachtools.2003.10.018
|
13 |
Maiya P S. Geometrical characterization of surface roughness and its application to fatigue crack initiation [J]. Mater. Sci. Eng., 1975, 21: 57
doi: 10.1016/0025-5416(75)90198-6
|
14 |
Suresh S, Ritchie R O. A geometric model for fatigue crack closure induced by fracture surface roughness [J]. Metall. Trans., 1982, 13A: 1627
|
15 |
Haddad M HEI, Smith K N, Topper T H. Fatigue crack propagation of short cracks [J]. J. Eng. Mater. Technol., 1979, 101: 42
doi: 10.1115/1.3443647
|
16 |
Xun L I, Guan C M, Zhao P. Influences of milling and grinding on machined surface roughness and fatigue behavior of GH4169 superalloy workpieces [J]. Chin. J. Aeronaut., 2018, 31: 1399
doi: 10.1016/j.cja.2017.07.013
|
17 |
Endo M, Yanase K. Effects of small defects, matrix structures and loading conditions on the fatigue strength of ductile cast irons [J]. Theor. Appl. Fract. Mech., 2014, 69: 34
doi: 10.1016/j.tafmec.2013.12.005
|
18 |
Wang J L, Zhang Y L, Zhao Q C, et al. The fatigue failure analysis and fatigue life prediction model of FV520B-I as a function of surface roughness in HCF regime [J]. J. Mater. Res., 2017, 32: 634
doi: 10.1557/jmr.2016.513
|
19 |
Newman Jr J C, Annigeri B S. Fatigue-life prediction method based on small-crack theory in an engine material [J]. J. Eng. Gas Turbines Power, 2012, 134: 032501
|
20 |
Lai J B, Huang H Z, Buising W. Effects of microstructure and surface roughness on the fatigue strength of high-strength steels [J]. Procedia Struct. Integ., 2016, 2: 1213
|
21 |
Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions [J]. Int. J. Fatigue, 1989, 11: 291
doi: 10.1016/0142-1123(89)90054-6
|
22 |
Andrews S, Sehitoglu H. A computer model for fatigue crack growth from rough surfaces [J]. Int. J. Fatigue, 2000, 22: 619
doi: 10.1016/S0142-1123(00)00018-9
|
23 |
Arola D, Williams C L. Estimating the fatigue stress concentration factor of machined surfaces [J]. Int. J. Fatigue, 2002, 24: 923
doi: 10.1016/S0142-1123(02)00012-9
|
24 |
Maiya P S, Busch D E. Effect of surface roughness on low-cycle fatigue behavior of type 304 stainless steel [J]. Metall. Trans., 1975, 6A: 1761
|
25 |
Yukitaka M, Masahiro E. Quantitative evaluation of fatigue strength of metals containing various small defects or cracks [J]. Eng. Fract. Mech., 1983, 17: 1
doi: 10.1016/0013-7944(83)90018-8
|
26 |
Newman Jr J C, Phillips E P, Swain M H. Fatigue-life prediction methodology using small-crack theory [J]. Int. J. Fatigue, 1999, 21: 109
doi: 10.1016/S0142-1123(98)00058-9
|
27 |
Ye Y L, Yang Z, Xu X X, et al. Effects of excess Mg and Si on the properties of 6101 conducting wire and its mechanism [J]. Rare Met. Mater. Eng., 2016, 45: 968
|
|
叶於龙, 杨 昭, 徐雪璇 等. 过量Mg、Si元素对6101电工导线性能影响及机制 [J]. 稀有金属材料与工程, 2016, 45: 968
|
28 |
Murakami Y. Effect of surface roughness on fatigue strength [A]. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions [M]. 2nd Ed., London: Academic Press, 2019: 1
|
29 |
Tanaka K, Mura T. A dislocation model for fatigue crack initiation [J]. J. Appl. Mech., 1981, 48: 97
doi: 10.1115/1.3157599
|
30 |
Krausz K, Krausz A S. On the physical meaning of the Paris equation [J]. Int. J. Fract., 1988, 36(2): 23
|
31 |
Suraratchai M, Limido J, Mabru C, et al. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy [J]. Int. J. Fatigue, 2008, 30: 2119
doi: 10.1016/j.ijfatigue.2008.06.003
|
32 |
Wang J L, Zhang Y L, Sun Q C, et al. Giga-fatigue life prediction of FV520B-I with surface roughness [J]. Mater. Des., 2016, 89: 1028
doi: 10.1016/j.matdes.2015.10.104
|
33 |
Zhao Y, Wang Q, Zhang W. Aluminum alloy fatigue life forecast based on linear elastic fracture mechanics [J]. Rallway Qual. Control, 2016, 44(8): 40
|
|
赵 扬, 王 强, 张 慰. 基于线弹性断裂力学的铝合金疲劳寿命预测 [J]. 铁道技术监督, 2016, 44(8): 40
|
34 |
Murakami Y. Effects of small defects and nonmetallic inclusions on the fatigue strength of metals [J]. Key Eng. Mater., 1991, 51-52: 37
doi: 10.4028/www.scientific.net/KEM.51-52.37
|
35 |
Liu Y M, Mahadevan S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution [J]. Int. J. Fatigue, 2009, 31: 476
doi: 10.1016/j.ijfatigue.2008.06.005
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|