Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (10): 1325-1333    DOI: 10.11900/0412.1961.2021.00087
Research paper Current Issue | Archive | Adv Search |
Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study
WANG Shuo1, WANG Junsheng1,2()
1.School of Materials, Beijing Institute of Technology, Beijing 100081, China
2.Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
Cite this article: 

WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study. Acta Metall Sin, 2022, 58(10): 1325-1333.

Download:  HTML  PDF(2121KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To obtain the stable interfacial structures of a δ'/θ'/δ' nanocomposite precipitate in Al-Li alloys, the formation enthalpy, interfacial energy, cleavage work, and ideal cleavage strength are calculated for all constructed interface structures at different growth stages. Thus, the results indicate that the δ'/θ'/δ' adopts an anti-phase a /2[110] interfacial structure when the θ' phase contains an odd number of Cu layers; conversely, it adopts an in-phase #2 interfacial structure. As θ' increases, these two structures transform by slipping a /2 along the [110] direction. Simultaneously, the heterogeneous nucleation of δ' achieves the stable δ'/θ' interfacial structure spontaneously. Under Rose's fracture model, this stable interfacial structure also possesses the highest bonding strength and the largest ideal cleavage strength. Finally, the crystal orbital Hamilton population and bond length analyses reveal the relation between the electronic bonding and structural stability. It is shown that the inter Al—Al interactions significantly influence the structural stability, which mainly originated from the 3p—3p orbital-pair contributions.

Key words:  Al-Li alloy      composite precipitate      interfacial energy      ideal strength      electronic structure      first-principles calculation     
Received:  26 February 2021     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(52073030)
About author:  WANG Junsheng, professor, Tel: (010)68915043, E-mail: junsheng.wang@bit.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00087     OR     https://www.ams.org.cn/EN/Y2022/V58/I10/1325

Fig.1  Schematics of anti-phase (a) and in-phase (b) in the δ'/θ'/δ' composite precipitate, and two kinds of in-phase interfacial structures (c) (The arrows are used to assist in showing the relationship for the opposite δ' phases)
Fig.2  Calculated formation enthalpies (ΔH) of the composite precipitate δ'/θ'/δ' containing different Cu layers with in-phase #1 and in-phase #2 two interfacial structures
Fig.3  Schematics showing the transformation of the composite precipitate δ'/θ'/δ' from in-phase #2 (a) to anti-phase a /2[010] (b) and to anti-phase a /2[110] (c), and the atomic structure of the δ' phase during the transformation (d)
Fig.4  Surface free energy evolution of the δ'/θ'/δ' composite precipitate slipping from in-phase #2 to anti-phase (a), and the corresponding activ-ation energy (Eactivation) along slipping path (b)
Fig.5  ΔH of δ'/θ'/δ' composite precipitate containing 2 and 3 Cu-layers with different relationships for the opposite δ'
Fig.6  Schematics how solving for interfacial energy of θ'/δ' interfacial structures, the interfacial structures of θ'/δ' containing vacuum (a), separated θ' (b) and δ' (c) phases with surface
StructureS / nm2γsurfaceθ' / (J·m-2)γsurfaceδ' / (J·m-2)γinterface / (J·m-2)
In-phase #20.1651.4010.8940.335
Anti-phase a / 2[010]0.1631.4180.8940.964
Anti-phase a / 2[110]0.1631.4450.846-0.015
Table 1  Calculated interface area (S), interfacial energy (γinterface), and relative surface energy (γsurface) of three cleavage planes with different phase relationships
Fig.7  Bonding energy (Eb)-displacement (d) curves for three θ'/δ' interface structures (a) and corres-ponding cleavage stress variation curves (b)
Structuredic / nmGc / (J·m-2)σic / GPa
In-phase #20.0591.94812.356
Anti-phase a / 2[010]0.0501.3419.796
Anti-phase a / 2[110]0.0612.09712.659
Table 2  Critical spacing (dic), cleavage energy (Gc), and the ideal cleavage stress (σic) for three interfacial structures with different phase relationships evaluated by RGS model under tensile deformation
Fig.8  Schematics of different atomic bonding in three types of θ'/δ' interfaces, including in-phase #2 (a), anti-phase a /2[010] (b), and anti-phase a /2[010] (c)
StructureLi1—Al2Li1—Al3Al1—Al2Al1—Al3
In-phase #20.2880.2880.2880.288
Anti-phase a / 2[010]0.3860.2710.2620.397
Anti-phase a / 2[110]0.2800.2800.2790.279
Table 3  Summaries of the bond lengths of different atomic interactions in three types of θ′/δ′ interfaces
StructureLi1—Al2Li1—Al3Al1—Al2Al1—Al3
In-phase #20.2560.2561.6551.655
Anti-phase a / 2[010]0.0520.5153.2650.178
Anti-phase a / 2[110]0.2640.2652.0312.031
Table 4  Summaries of the integral vales of different atomic interactions based on the crystal orbital Hamilton population (-ΙCOHP) analyses for three types of θ'/δ' interfaces
Fig.9  Different orbital-pair contributions to the total Al1—Al2 (a) and Li1—Al3 (b) interactions based on the crystal orbital Hamilton population analyses for the anti-phase a /2[110] interfacial structure (-pCOHP—project crystal orbital Hamilton population, Ef—Fermi level)
1 Zhang P, Chen M H. Progress in characterization methods for thermoplastic deforming constitutive models of Al-Li alloys: A review [J]. J. Mater. Sci., 2020, 55: 9828
doi: 10.1007/s10853-020-04682-8
2 Decreus B, Deschamps A, De Geuser F, et al. The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys [J]. Acta Mater., 2013, 61: 2207
doi: 10.1016/j.actamat.2012.12.041
3 Miao J S, Sutton S, Luo A A. Microstructure and hot deformation behavior of a new aluminum-lithium-copper based AA2070 alloy [J]. Mater. Sci. Eng., 2020, A777: 139048
4 Kilmer R J, Stoner G E. Effect of Zn additions on precipitation during aging of alloy 8090 [J]. Scr. Metall. Mater., 1991, 25: 243
doi: 10.1016/0956-716X(91)90388-H
5 Meng L, Zheng X L. Overview of the effects of impurities and rare earth elements in Al-Li alloys [J]. Mater. Sci. Eng., 1997, A237: 109
6 Vasudévan A K, Fricke W G, Malcolm R C, et al. On through thickness crystallographic texture gradient in Al-Li-Cu-Zr alloy [J]. Metall. Trans., 1988, 19A: 731
7 Zhao T Z, Jin L, Xu Y, et al. Anisotropic yielding stress of 2198 Al-Li alloy sheet and mechanisms [J]. Mater. Sci. Eng., 2019, A771: 138572
8 Kaibyshev R, Shipilova K, Musin F, et al. Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion [J]. Mater. Sci. Eng., 2005, A396: 341
9 Liu B, Chen Z, Wang Y X, et al. The effect of an electric field on the mechanical properties and microstructure of Al-Li alloy containing Ce [J]. Mater. Sci. Eng., 2001, A313: 69
10 Sidhar H, Mishra R S. Aging kinetics of friction stir welded Al-Cu-Li-Mg-Ag and Al-Cu-Li-Mg alloys [J]. Mater. Des., 2016, 110: 60
doi: 10.1016/j.matdes.2016.07.126
11 Terrones L A H, Monteiro S N. Composite precipitates in a commercial Al-Li-Cu-Mg-Zr alloy [J]. Mater. Charact., 2007, 58: 156
doi: 10.1016/j.matchar.2006.04.008
12 Deschamps A, Garcia M, Chevy J, et al. Influence of Mg and Li content on the microstructure evolution of Al-Cu-Li alloys during long-term ageing [J]. Acta Mater., 2017, 122: 32
doi: 10.1016/j.actamat.2016.09.036
13 Gumbmann E, De Geuser F, Sigli C, et al. Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy [J]. Acta Mater., 2017, 133: 172
doi: 10.1016/j.actamat.2017.05.029
14 Mao Z, Chen W, Seidman D N, et al. First-principles study of the nucleation and stability of ordered precipitates in ternary Al-Sc-Li alloys [J]. Acta Mater., 2011, 59: 3012
doi: 10.1016/j.actamat.2011.01.041
15 Wang S, Zhang C, Wang J S. Structures and properties of nano-precipitates in Al-Li alloys [J]. Aeronaut. Manuf. Technol., 2021, 64: 68
王 硕, 张 弛, 王俊升. 铝锂合金纳米析出相结构与性能综述 [J]. 航空制造技术, 2021, 64: 68
16 Wang S, Zhang C, Li X, et al. Heterophase interface dominated deformation and mechanical properties in Al-Cu-Li Alloys [J]. Adv. Theory Simul., 2021, 4: 2100059
doi: 10.1002/adts.202100059
17 Duan S Y, Wu C L, Gao Z, et al. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2017, 129: 352
doi: 10.1016/j.actamat.2017.03.018
18 Wang S, Zhang C, Li X, et al. First-principle investigation on the interfacial structure evolution of the δ'/θ'/δ' composite precipitates in Al-Cu-Li alloys [J]. J. Mater. Sci. Technol., 2020, 58: 205
doi: 10.1016/j.jmst.2020.03.065
19 Wang S, Zhang C, Li X, et al. Uncovering the influence of Cu on the thickening and strength of the δ'/θ'/δ' nano-composite precipitate in Al-Cu-Li alloys [J]. J. Mater. Sci., 2021, 56: 10092
doi: 10.1007/s10853-021-05894-2
20 Rose J H, Smith J R, Ferrante J. Universal features of bonding in metal [J]. Phys. Rev., 1983, 28B: 1835
21 Maintz S, Deringer V L, Tchougréeff A L, et al. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids [J]. J. Comput. Chem., 2013, 34: 2557
doi: 10.1002/jcc.23424 pmid: 24022911
22 Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
23 Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
24 Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
25 Vaithyanathan V, Wolverton C, Chen L Q. Multiscale modeling of θ′ precipitation in Al-Cu binary alloys [J]. Acta Mater., 2004, 52: 2973
doi: 10.1016/j.actamat.2004.03.001
26 Wang Y, Liu Z K, Chen L Q, et al. First-principles calculations of β″-Mg5Si6/α-Al interfaces [J]. Acta Mater., 2007, 55: 5934
doi: 10.1016/j.actamat.2007.06.045
27 Butler K T, Gautam G S, Canepa P. Designing interfaces in energy materials applications with first-principles calculations [J]. npj Comput. Mater., 2019, 5: 19
doi: 10.1038/s41524-019-0160-9
28 Zhang S H, Fu Z H, Zhang R F. ADAIS: Automatic derivation of anisotropic ideal strength via high-throughput first-principles computations [J]. Comput. Phys. Commun., 2019, 238: 244
doi: 10.1016/j.cpc.2018.12.012
[1] HUANGFU Hao, WANG Zilong, LIU Yongli, MENG Fanshun, SONG Jiupeng, QI Yang. A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties[J]. 金属学报, 2022, 58(2): 231-240.
[2] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[3] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[4] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[5] Chao CAI,Yang LI,Jinfeng LI,Zhao ZHANG,Jianqing ZHANG. Correlation Between Ageing Precipitation, Potential and Intergranular Corrosion of 2A97 Al-Li Alloy Sheet[J]. 金属学报, 2019, 55(8): 958-966.
[6] Wang LI,Qian SUN,Hongxiang JIANG,Jiuzhou ZHAO. Solidification of Al-Bi Alloy and Influence of Microalloying Element Sn[J]. 金属学报, 2019, 55(7): 831-839.
[7] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[8] Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys[J]. 金属学报, 2019, 55(3): 369-375.
[9] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[10] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[11] Caihong DONG, Yongli LIU, Yang QI. Effect of Thickness on the Surface and Electronic Properties of Bi Film[J]. 金属学报, 2018, 54(6): 935-942.
[12] Zengyun JIAN, Tao XU, Junfeng XU, Man ZHU, Fang'e CHANG. Development of Solid-Liquid Interfacial Energyof Melt-Crystal[J]. 金属学报, 2018, 54(5): 766-772.
[13] Yuchao FENG, Weiwei XING, Shoulong WANG, Xingqiu CHEN, Dianzhong LI, Yiyi LI. First-Principles Study of Hydrogen Behaviors at Oxide/Ferrite Interface in ODS Steels[J]. 金属学报, 2018, 54(2): 325-338.
[14] Jianxue LIU, Wenjun XI, Neng LI, Shujie LI. Effect of Interfacial Energy on Distribution of Nanoparticle in the Melt During the Preparation of Fe-Based ODS Alloys by Thermite Reaction[J]. 金属学报, 2017, 53(8): 1011-1017.
[15] Jinfeng LI,Danyang LIU,Ziqiao ZHENG,Yonglai CHEN,Xuhu ZHANG. EFFECT OF Er MICRO-ALLOYING ON MECHANICAL PROPERTIES AND MICROSTRUCTURES OF 2055 Al-Li ALLOY[J]. 金属学报, 2016, 52(7): 821-830.
No Suggested Reading articles found!