Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (10): 1271-1280    DOI: 10.11900/0412.1961.2021.00530
Research paper Current Issue | Archive | Adv Search |
Effects of Microstructure and Strain Rate on Dynamic Mechanical Properties and Adiabatic Shear Band of TC4 Alloy
CHEN Wei1, ZHANG Huan1, MU Juan1(), ZHU Zhengwang2, ZHANG Haifeng2, WANG Yandong1
1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Sciences and Engineering, Northeastern University, Shenyang 110819, China
2.Shi -changxu Advanced Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

CHEN Wei, ZHANG Huan, MU Juan, ZHU Zhengwang, ZHANG Haifeng, WANG Yandong. Effects of Microstructure and Strain Rate on Dynamic Mechanical Properties and Adiabatic Shear Band of TC4 Alloy. Acta Metall Sin, 2022, 58(10): 1271-1280.

Download:  HTML  PDF(2790KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Under dynamic load, shear bands constitute the main deformation mode comparaed with quasistatic deformation. This study systematically investigates the influence of microstructures and strain rates of Ti-6Al-4V (TC4) alloys on their adiabatic shear behavior. TC4 alloys with three types of microstructures (lamellar, bimodal, and equiaxial) were successfully obtained via different thermal treatments. The dynamic mechanical properties, such as the critical shear strain rates of the hardening, softening transformation, maximum shear strength, critical shear strain rates of adiabatic shear-band nucleation and bearing time of the three types of microstructures were compared. Results indicate that compared with the lamellar bimodal and equiaxial TC4 alloys, the lamellar TC4 alloy shows the best dynamic mechanical properties, achieving higher shear strength and critical shear strain rates as well as the lowest adiabatic shear sensitivity. Microstructural analysis reveals that the adiabatic shear bands that formed in the three types of alloys are brittle. The width of the shear band decreases with increasing shear strain rate. Furthermore, at the same shear strain rate, the order of the widths of the shear bands is as follows: lamellar TC4 alloy > bimodal TC4 alloy > equiaxial TC4 alloy.

Key words:  TC4 alloy      dynamic mechanical property      adiabatic shear sensitivity      shear band     
Received:  31 December 2021     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51771049);National Natural Science Foundation of China(51790484);National Key Laboratory Fund of China(JCKYS2020602005)
About author:  MU Juan, associate professor, Tel: (024)83691568, E-mail: muj@atm.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00530     OR     https://www.ams.org.cn/EN/Y2022/V58/I10/1271

Fig.1  Schematic of size of the hat-shaped sample (unit: mm)
Fig.2  XRD spectra of TC4 alloy as-received and after different heat treatments
Fig.3  SEM images of TC4 alloy with different microstructures (Insets show the magnified images)
(a) as-received (b) equiaxed microstructure
(c) lamellar microstructure (d) bimodal microstructure
Fig.4  Dynamic shear stress-strain curves of TC4 alloy with different microstructures at different shear strain rates
(a) equiaxed microstructure (b) lamellar microstructure
(c) bimodal microstructure (d) the shear strain rate of equiaxed microstructure is 7467 s-1
Fig.5  Variation curves of shear strength with shear strain rate of TC4 alloy with different microstructures
Fig.6  Shear stress-time curves of TC4 alloy with different microstructures at shear strain rates of 5000 s-1 (a), 6000 s-1 (b), 7000 s-1 (c), and 8000 s-1 (d)
Specimen5000 s-16000 s-17000 s-18000 s-1
Equiaxed83797874
Lamellar98878482
Duplex86848077
Table 1  Bearing time of TC4 alloy with different microstructures at different shear strain rates
Fig.7  Variation curves of adiabatic shear band width (t) of TC4 alloy with different microstructures
Fig.8  Adiabatic shear band morphologies of TC4 alloy with equiaxed (a), lamellar (b), and bimodal (c) microstructures
Fig.9  Crack morphologies of TC4 alloy with equiaxed (a), lamellar (b), and bimodal (c) microstructures
Fig.10  Schematics of fracture process of TC4 alloy
(a) adiabatic shear band formation (b) microcrack formation (c) macrocrack formation
(d) macrocrack steering (e) the crack continues to grow (f) two cracks converge
1 Schutz R W, Watkins H B. Recent developments in titanium alloy application in the energy industry [J]. Mater. Sci. Eng., 1998, A243: 305
2 Jin H X, Wei K X, Li J M, et al. Research development of titanium alloy in aerospace industry [J]. Chin. J. Nonferrous Met., 2015, 25: 280
金和喜, 魏克湘, 李建明 等. 航空用钛合金研究进展 [J]. 中国有色金属学报, 2015, 25: 280
3 Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, A213: 103
4 Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
doi: 10.11900/0412.1961.2021.00353
杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
5 Rae W. Thermo-metallo-mechanical modelling of heat treatment induced residual stress in Ti-6Al-4V alloy [J]. Mater. Sci. Technol., 2019, 35: 747
doi: 10.1080/02670836.2019.1591031
6 Majorell A, Srivatsa S, Picu R C. Mechanical behavior of Ti-6Al-4V at high and moderate temperatures—Part I: Experimental results [J]. Mater. Sci. Eng., 2002, A326: 297
7 Du Y X, Yang X L, Li Z S, et al. Shear localization behavior in hat-shaped specimen of near-α Ti-6Al-2Zr-1Mo-1V titanium alloy loaded at high strain rate [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 1641
doi: 10.1016/S1003-6326(21)65604-2
8 Pramanik A, Littlefair G. Machining of titanium alloy (Ti-6Al-4V)-theory to application [J]. Mach. Sci. Technol., 2015, 19: 1
doi: 10.1080/10910344.2014.991031
9 Zhu Z S, Shang G Q, Wang X N, et al. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications [J]. J. Aeronaut. Mater., 2020, 40(3): 1
朱知寿, 商国强, 王新南 等. 航空用钛合金显微组织控制和力学性能关系 [J]. 航空材料学报, 2020, 40(3): 1
10 Yang Y, Cheng X L. Current status and trends in researches on adiabatic shearing [J]. Chin. J. Nonferrous Met., 2002, 12: 401
杨 扬, 程信林. 绝热剪切的研究现状及发展趋势 [J]. 中国有色金属学报, 2002, 12: 401
11 Liao S C, Duffy J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy [J]. J. Mech. Phys. Solids, 1998, 46: 2201
doi: 10.1016/S0022-5096(98)00044-1
12 Yu J Q, Zhou H H, Shen L T, et al. Thermo-plastic shear bands induced during dynamic loading in Ti-55 alloys [J] Acta Metall. Sin., 1999, 35: 379
禹金强, 周惠华, 沈乐天 等. Ti-55合金中的热塑剪切带 [J]. 金属学报, 1999, 35: 379
13 Wang B F, Li J, Sun J Y, et al. Adiabatic shear bands in Ti-6Al-4V alloy with lamellar microstructure [J]. J. Mater. Eng. Perform., 2014, 23: 1896
doi: 10.1007/s11665-014-0944-5
14 Sun X R, Wang H Z, Yang P, et al. Mechanical behaviors and micro-shear structures of metals with different structures by high-speed compression [J]. Acta Metall. Sin., 2014, 50: 387
doi: 10.3724/SP.J.1037.2013.00634
孙秀荣, 王会珍, 杨 平 等. 不同结构金属高速压缩力学行为及微观剪切结构差异 [J]. 金属学报, 2014, 50: 387
doi: 10.3724/SP.J.1037.2013.00634
15 Peirs J, Verleysen P, Degrieck J, et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V [J]. Int. J. Impact Eng., 2010, 37: 703
doi: 10.1016/j.ijimpeng.2009.08.002
16 Lee D G, Lee S, Lee C S, et al. Effects of microstructural factors on quasi-static and dynamic deformation behaviors of Ti-6Al-4V alloys with Widmanstatten structures [J]. Metall. Mater. Trans., 2003, 34A: 2541
17 Zheng C, Wang F C, Cheng X W, et al. Capturing of the propagating processes of adiabatic shear band in Ti-6Al-4V alloys under dynamic compression [J]. Mater. Sci. Eng., 2016, A658: 60
18 Li W Q, Geng T Q, Ge S F, et al. Effect of strain rate on compressive behavior of a Zr-based metallic glass under a wide range of strain rates [J]. Materials, 2020, 13: 2861
doi: 10.3390/ma13122861
19 Guo X R, Zhang J X, Yi X B, et al. Influence of volume fraction of secondary α phase on dynamic compression properties and adiabatic shear sensitivity of TC18 titanium alloy [J]. Trans. Mater. Heat Treat., 2020, 41(10): 24
郭小汝, 张俊喜, 易湘斌 等. 次生α相含量对TC18钛合金动态压缩性能和绝热剪切敏感性的影响 [J]. 材料热处理学报, 2020, 41(10): 24
20 Chen Y, Pei C H, Li Z X, et al. Dynamic mechanical behavior of α + β titanium alloys at high strain rate [J]. J. Aeronaut. Mater., 2013, 33(6): 8
陈 洋, 裴传虎, 李臻熙 等. α + β钛合金在高应变率下的动态力学性能 [J]. 航空材料学报, 2013, 33(6): 8
21 Yi X B, Zhang J X, Li B D, et al. Dynamic compressive mechanical properties of TB6 titanium alloy under high temperature and high strain rate [J]. Rare Met. Mater. Eng., 2019, 48: 1220
易湘斌, 张俊喜, 李宝栋 等. 高温、高应变率下TB6钛合金的动态压缩性能 [J]. 稀有金属材料与工程, 2019, 48: 1220
22 Yang H B, Xiang W L, Xu Y, et al. Effect of cooling ways on adiabatic shear sensitivity of TC21 titanium alloy [J]. Chin. J. Nonferrous Met., 2017, 27: 920
杨红斌, 向文丽, 徐 媛 等. 冷却方式对TC21钛合金绝热剪切敏感性的影响 [J]. 中国有色金属学报, 2017, 27: 920
23 Mao P L, Sun Q H, Liu Z, et al. Mechanical properties and adiabatic shear sensitivity of Ti-6Al-4V alloy with different microstructures [J]. Chin. J. Rare Met., 2016, 40: 1207
毛萍莉, 孙庆海, 刘 正 等. 微观组织状态对Ti-6Al-4V合金动态力学性能和绝热剪切敏感性的影响 [J]. 稀有金属, 2016, 40: 1207
24 Zheng C, Wang F C, Cheng X W, et al. Effect of microstructures on ballistic impact property of Ti-6Al-4V targets [J]. Mater. Sci. Eng., 2014, A608: 53
25 Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical propertiesin α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
黄森森, 马英杰, 张仕林 等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
26 Sun K, Yu X D, Tan C W, et al. Influence of adiabatic shear bands intersection on the ballistic impact of Ti-6Al-4V alloys with three microstructures [J]. Mater. Sci. Eng., 2014, A606: 257
27 Bai L Y. A criterion for thermo-plastic shear instability [A]. Shock Waves and High-Strain-Rate Phenomena in Metals [M]. New York: Springer, 1981: 277
28 Wang Z M, Chen Z Y, Zhan C K, et al. Quasi-static and dynamic forced shear deformation behaviors of Ti-5Mo-5V-8Cr-3Al alloy [J]. Mater. Sci. Eng., 2017, A691: 51
29 Yan N, Li Z Z, Xu Y B, et al. Shear localization in metallic materials at high strain rates [J]. Prog. Mater. Sci., 2021, 119: 100755
doi: 10.1016/j.pmatsci.2020.100755
30 Recht R F. Catastrophic thermoplastic shear [J]. J. Appl. Mech., 1964, 31: 189
doi: 10.1115/1.3629585
31 Xu Y, Sun K, Zi X F, et al. Study on adiabatic shearing sensitivity of different microstructures of TC6 titanium alloy at different stress states [J]. Rare Met. Mater. Eng., 2011, 40: 2002
徐 媛, 孙 坤, 自兴发 等. 不同应力状态下TC6钛合金不同组织绝热剪切敏感性研究 [J]. 稀有金属材料与工程, 2011, 40: 2002
32 Sun Q H. Adiabatic shearing mechanism of Ti- 6Al-4V [D]. Shenyang: Shenyang University of Technology, 2016
孙庆海. Ti-6Al-4V 绝热剪切机理 [D]. 沈阳: 沈阳工业大学, 2016
33 Zhou T F, Wu J J, Che J T, et al. Dynamic shear characteristics of titanium alloy Ti-6Al-4V at large strain rates by the split Hopkinson pressure bar test [J]. Int. J. Impact Eng., 2017, 109: 167
doi: 10.1016/j.ijimpeng.2017.06.007
34 Wu G Q, Song H, Sha W, et al. Relationship between microstructure and deformation behaviour during dynamic compression in Ti-3Al-5Mo-5V alloy [J]. Mater. Sci. Technol., 2011, 27: 1399
doi: 10.1179/1743284711Y.0000000019
35 Ran C, Chen P W, Li L, et al. Dynamic shear deformation and failure of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy [J]. Mater. Sci. Eng., 2017, A694: 41
36 Ran C, Chen P W, Li L, et al. High-strain-rate plastic deformation and fracture behaviour of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy at room temperature [J]. Mech. Mater., 2018, 116: 3
doi: 10.1016/j.mechmat.2017.08.007
37 Dodd B, Bai Y L. Introduction to Adiabatic Shear Localization [M]. London: Imperial College Press, 2014: 33
38 Xue Q, Meyers M A, Nesterenko V F. Self-organization of shear bands in titanium and Ti-6Al-4V alloy [J]. Acta Mater., 2002, 50: 575
doi: 10.1016/S1359-6454(01)00356-1
39 Lee W S, Lin C F. Plastic deformation and fracture behaviour of Ti-6Al-4V alloy loaded with high strain rate under various temperatures [J]. Mater. Sci. Eng., 1998, A241: 48
40 Ran C, Chen P W. Shear localization and recrystallization in high strain rate deformation in Ti-5Al-5Mo-5V-1Cr-1Fe alloy [J]. Mater. Lett., 2018, 232: 142
doi: 10.1016/j.matlet.2018.08.095
[1] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[2] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[3] JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. 金属学报, 2021, 57(4): 425-438.
[4] Jialin ZHU,Shifeng LIU,Yu CAO,Yahui LIU,Chao DENG,Qing LIU. Effect of Cross Rolling Cycle on the Deformed and Recrystallized Gradient in High-Purity Tantalum Plate[J]. 金属学报, 2019, 55(8): 1019-1033.
[5] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[6] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[7] Hui XING, Mingxing GUO, Xiaofeng WANG, Yan ZHANG, Jishan ZHANG, Linzhong ZHUANG. EFFECT OF Fe-RICH PHASE PARTICLES WITH DIFFER-ENT CONCENTRATIONS ON THE BENDABILITYOF Al-Mg-Si-Cu SERIES ALLOYS[J]. 金属学报, 2016, 52(3): 271-280.
[8] MA Guangcai, FU Huameng, WANG Zheng, XU Qingliang, ZHANG Haifeng. STUDY ON FABRICATION AND PROPERTIES OF 304 STAINLESS STEEL CAPILLARY TUBES/Zr53.5Cu26.5Ni5Al12Ag3 BULK METALLIC GLASS COMPOSITES[J]. 金属学报, 2014, 50(9): 1087-1094.
[9] SUN Xiurong, WANG Huizhen, YANG Ping, MAO Weimin. MECHANICAL BEHAVIORS AND MICRO-SHEAR STRUCTURES OF METALS WITH DIFFERENT STRUCTURES BY HIGH-SPEED COMPRESSION[J]. 金属学报, 2014, 50(4): 387-394.
[10] ZHANG Bo, FU Huameng, ZHU Zhengwang, ZHANG Haifeng,DONG Chuang,HU Zhuangqi. EFFECT OF W FIBER DIAMETER ON THE COMPRESSIVE MECHANICAL PROPERTIES OF THE Zr-BASED METALLIC GLASS COMPOSITES[J]. 金属学报, 2013, 49(10): 1191-1200.
[11] WANG Jie, ZHANG Hongwei, WANG Aimin, LI Hong, FU Huameng, ZHU Zhengwang,ZHANG Haifeng. INVESTIGATION OF DYNAMIC MECHANICAL BEHAVIOR OF A NEW Zr-Ti ALLOY[J]. 金属学报, 2012, 48(5): 636-640.
[12] TANG Lian LU Lei. EFFECT OF TWIN LAMELLAR THICKNESS ON THE FATIGUE PROPERTIES OF NANO--TWINNED Cu[J]. 金属学报, 2009, 45(7): 808-814.
[13] XU Ze-Jian. RESEARCH ON DYNAMIC MECHANICAL PROPERTIES OF 0Cr18Ni10Ti WELDED JOINT AT ELEVATED TEMPERATURES AND HIGH STRAIN RATES[J]. 金属学报, 2008, 44(1): 98-104 .
[14] . Fatigue Property of Ultrafine-grained Copper Produced by ECAP[J]. 金属学报, 2007, 43(5): 498-502 .
[15] LU Qiuhong; ZHAO Weisong; SUI Manling; LI Douxing. MICROSTRUCTURES OF NANO-TWIN STRUCTURED Cu PRODUCED BY DYNAMIC PLASTIC DEFORMATION AT LIQUID NITROGEN TEMPERATURE[J]. 金属学报, 2006, 42(9): 909-913 .
No Suggested Reading articles found!