Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (1): 121-128    DOI: 10.11900/0412.1961.2020.00183
Research paper Current Issue | Archive | Adv Search |
Defect Evolution in H/He Neutral Beam Irradiated W-ZrC Alloy Using Positron Annihilation Spectroscopy
TIAN Xuefen1, LIU Xiang2, GONG Min1, ZHANG Peiyuan1, WANG Kang3, DENG Aihong1()
1.College of Physics, Sichuan University, Chengdu 610064, China
2.Southwestern Institute of Physics, Chengdu 610041, China
3.College of Physics and Electronic Engineering, Heze University, Heze 274015, China
Cite this article: 

TIAN Xuefen, LIU Xiang, GONG Min, ZHANG Peiyuan, WANG Kang, DENG Aihong. Defect Evolution in H/He Neutral Beam Irradiated W-ZrC Alloy Using Positron Annihilation Spectroscopy. Acta Metall Sin, 2021, 57(1): 121-128.

Download:  HTML  PDF(5745KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Plasma facing materials (PFMs) in future magnetic fusion devices will face various challenges, such as 14.1 MeV neutron and transmutation gas irradiation at high temperatures. W has been considered as one of the most effective candidates for a PFM in recent years. However, pure W exhibits some drawbacks that limit its applications. Conversely, W-ZrC (W-0.5%ZrC, mass fraction) alloy demonstrates excellent performance, such as a relatively low ductile-brittle transition temperature (DBTT), high ductility, and high strength, which will be particularly useful in future fusion reactors. In this work, the Doppler-broadening slow positron beam analysis (DB-SPBA) and SEM were used to characterize the W-ZrC alloy, which had been irradiated by pure H neutral beam or H+6%He (atomic fraction) neutral beam. In the DB-SPBA, parameters S and W were used to characterize the open volume defects in the samples. Under the pure H neutral beam irradiation, the defects were mainly H-V complexes with a large ratio of vacancy to H in the sample at the surface temperature of 850oC. When the surface temperature of the irradiated sample was 1000oC, there was only one kind of vacancy-type defect without any defect damage layer due to the recovery of defect damage in the sample. The surface morphology was smooth and flat at the irradiated sample surface temperature of 1000oC, and the most of pinhole damage structures disappeared compared to the surface temperature of 850oC. The S value in the sample subjected to the H+6%He neutral beam irradiation at the surface temperature of 800oC was larger than that at 700oC because of the increasing vacancy-type defect volume, and defect types were more complex in the 800oC sample. The defect damage layer in the 800oC sample was wider than that in the 700oC sample. Both the 700oC and 800oC samples presented more than one type of defects, but the sample surface damage was significantly more serious at 800oC.

Key words:  W-ZrC      H      H/He      positron annihilation     
Received:  28 May 2020     
ZTFLH:  TG146.4  
Fund: National Natural Science Foundation of China(11675114)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00183     OR     https://www.ams.org.cn/EN/Y2021/V57/I1/121

ParameterValueUnit
Density19.07±0.04g·cm-3
Relative density99.7±0.2%
Average grain size1.03±0.26μm
Hardness6.7±0.2GPa
Ductile-brittle transition temperatureAbout 100oC
Thermal conductivity155±5W·m-1·oC-1
Table 1  Parameters of W-ZrC alloy samples at room temperature
Sample No.Irradiation conditionPower / (MW·m-2)Fluence / m-2Surface temperature / oC
1H103.4×1024850
2H103.4×10241000
3H+6%He86.7×1024700
4H+6%He86.7×1024800
Table 2  Irradiation parameters of W-ZrC alloy samples
Fig.1  SRIM calculation results of H and He implantation profiles in W-ZrC (a), and the corresponding damage profiles (b)
Fig.2  SEM images of nonirradiated sample (a), and samples No.1 (b), No.2 (c), No.3 (d), and No.4 (e)
Fig.3  S-E plots (a), the curve lines corresponding to the best fit with the VEPFIT program of the experimental data;depth profiles of the fitted S parameter (b), and W-S (c) for different samples (S—low momentum annihilation fraction, E—positron energy, W—high momentum annihilation fraction)
Sample No.S-layer (1)S-layer (2)S-layer (3)
12.22±0.1525.5±2.050.1±5.6
23.78±0.13-64.6±4.5
34.96±0.4552.9±6.174±17
46.2±3.248.8±4.375±10
Table 3  The effective positron diffusion lengths of W-ZrC alloy samples under different irradiation conditions
1 Tanabe T, Noda N, Nakamura H. Review of high Z materials for PSI applications [J]. J. Nucl. Mater., 1992, 196-198: 11
2 García-Rosales C. Erosion processes in plasma-wall interactions [J]. J. Nucl. Mater., 1994, 211: 202
3 Chuyanov V A. ITER EDA project status [J]. J. Nucl. Mater., 1996, 233-237: 4
4 Causey R, Wilson K, Venhaus T, et al. Tritium retention in tungsten exposed to intense fluxes of 100 eV tritons [J]. J. Nucl. Mater., 1999, 266-269: 467
5 Janeschitz G. Plasma-wall interaction issues in ITER [J]. J. Nucl. Mater. 2001, 290-293: 1
6 Wurster S, Gludovatz B, Pippan R. High temperature fracture experiments on tungsten-rhenium alloys [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 692
7 Rieth M, Dafferner B. Limitations of W and W-1% La2O3 for use as structural materials [J]. J. Nucl. Mater., 2005, 342: 20
8 Yar M A, Wahlberg S, Bergqvist H, et al. Spark plasma sintering of tungsten-yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization [J]. J. Nucl. Mater., 2011, 412: 227
9 Xie Z M, Miao S, Liu R, et al. Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2017, 496: 41
10 Kurishita H, Amano Y, Kobayashi S, et al. Development of ultra-fine grained W-TiC and their mechanical properties for fusion applications [J]. J. Nucl. Mater., 2007, 367-370: 1453
11 Wang Y K, Miao S, Xie Z M, et al. Thermal stability and mechanical properties of HfC dispersion strengthened W alloys as plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2017, 492: 260
12 Xie Z M, Liu R, Miao S, et al. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature [J]. Sci. Rep., 2015, 5: 16014
13 Xie Z M, Zhang T, Liu R, et al. Grain growth behavior and mechanical properties of zirconium micro-alloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys [J]. Int. J. Refract. Met. Hard Mater., 2015, 51: 180
14 Xie Z M, Liu R, Miao S, et al. High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys [J]. J. Nucl. Mater., 2016, 469: 209
15 Ding H L, Xie Z M, Fang Q F, et al. Determination of the DBTT of nanoscale ZrC doped W alloys through amplitude-dependent internal friction technique [J]. Mater. Sci. Eng., 2018, A716: 268
16 Deng H W, Xie Z M, Wang Y K, et al. Mechanical properties and thermal stability of pure W and W-0.5wt%ZrC alloy manufactured with the same technology [J]. Mater. Sci. Eng., 2018, A715: 117
17 Liu R, Xie Z M, Yang J F, et al. Recent progress on the R&D of W-ZrC alloys for plasma facing components in fusion devices [J]. Nucl. Mater. Energy, 2018, 16: 191
18 Liu X, Lian Y, Greuner H, et al. Irradiation effects of hydrogen and helium plasma on different grade tungsten materials [J]. Nucl. Mater. Energy, 2017, 12: 1314
19 Kajita S, Sakaguchi W, Ohno N, et al. Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions [J]. Nucl. Fusion, 2009, 49: 095005
20 Baldwin M J, Doerner R P. Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades [J]. J. Nucl. Mater., 2010, 404: 165
21 Baldwin M J, Doerner R P. Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J]. Nucl. Fusion, 2008, 48: 035001
22 Nishijima D, Ye M Y, Ohno N, et al. Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II [J]. J. Nucl. Mater., 2004, 329-323: 1029
23 Nishijima D, Ye M Y, Ohno N, et al. Incident ion energy dependence of bubble formation on tungsten surface with low energy and high flux helium plasma irradiation [J]. J. Nucl. Mater., 2003, 313-316: 97
24 Tokunaga K, Fujiwara T, Ezato K, et al. Effects of high heat flux hydrogen and helium mixture beam irradiation on surface modification and hydrogen retention in tungsten materials [J]. J. Nucl. Mater., 2009, 390-391: 916
25 Miyamoto M, Nishijima D, Baldwin M J, et al. Microscopic damage of tungsten exposed to deuterium-helium mixture plasma in PISCES and its impacts on retention property [J]. J. Nucl. Mater., 2011, 415(): S657
26 Wang S J, Chen Z Q, Wang B, et al. Applied Positron Spectroscopy [M]. Wuhan: Hubei Science and Technology Press, 2008: 39
王少阶, 陈志权, 王 波等. 应用正电子谱学 [M]. 武汉: 湖北科学技术出版社, 2008: 39
27 Yu W Z. Positron Physics and Its Application [M]. Beijing: Science Press, 2002: 441
郁伟中. 正电子物理及其应用 [M]. 北京: 科学出版社, 2002: 441
28 Van Veen A, Schut H, De Vries J, et al. Analysis of positron profiling data by means of “VEPFIT” [J]. AIP Conf. Proc., 1991, 218: 171
29 Greuner H, Maier H, Balden M, et al. Investigation of W components exposed to high thermal and high H/He fluxes [J]. J. Nucl. Mater., 2011, 417: 495
30 Jiang B, Wan F R, Geng W T. Strong hydrogen trapping at helium in tungsten: Density functional theory calculations [J]. Phys. Rev., 2010, 81B: 134112
31 Iwaoka H, Arita M, Horita Z. Hydrogen diffusion in ultrafine-grained palladium: Roles of dislocations and grain boundaries [J]. Acta Mater., 2016, 107: 168
32 Ramachandran R, David C, Magudapathy P, et al. Study of defect complexes and their evolution with temperature in hydrogen and helium irradiated RAFM steel using positron annihilation spectroscopy [J]. Fusion Eng. Des., 2019, 142: 55
33 Myers S M, Besenbacher F, Nørskov J K. Immobilization mechanisms for ion‐implanted deuterium in aluminum [J]. J. Appl. Phys., 1985, 58: 1841
34 Abramov E, Eliezer D. Hydrogen trapping in helium damaged metals: A theoretical approach [J]. J. Mater. Sci., 1992, 27: 2595
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[5] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[7] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[8] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[9] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[10] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[11] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[12] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[13] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[14] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[15] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
No Suggested Reading articles found!