|
|
Enhanced Welding Properties of High Strength Steel via Rare Earth Oxide Metallurgy Technology |
LU Bin1,2,3, CHEN Furong1( ), ZHI Jianguo2,3, GENG Ruming4 |
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China 2 Inner Mongolia Baotou Steel Union Co. , Ltd. , Baotou 014010, China 3 Inner Mongolia Enterprise Key Laboratory of Rare Earth Steel Products Research and Development, Baotou 014010, China 4 State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
LU Bin, CHEN Furong, ZHI Jianguo, GENG Ruming. Enhanced Welding Properties of High Strength Steel via Rare Earth Oxide Metallurgy Technology. Acta Metall Sin, 2020, 56(9): 1206-1216.
|
Abstract With the increase of the strength of steel plate, the welding performance of the steel decreases sharply and the welding crack susceptibility increases. The properties of welding heat-affected zone of high strength steel lower with increasing the welding heat input. The present work aims to improve the toughness of welding heat-affected zone by rare earth oxide metallurgy technology. The effect of 5×10-6 and 23×10-6 rare earth Ce on the impact toughness, microstructure, austenite grains of heat-affected zone and fracture morphology of welded joint were studied. When the steel contains 5×10-6 rare earth Ce, the inclusions are MgO-Al2O3 spinels surrounded with a small amount of CeAlO3 inclusions. In the case of the steel with 23×10-6Ce, Ce can completely modify MgO-Al2O3 inclusions, resulting in the formation of (CeCa)S+MgO-Al2O3+MnS complex inclusions. The simulation welding of high strength steel was performed. The results show that the Charpy impact energy of heat-affected zone of the steel with 23×10-6Ce is higher at four different heat inputs, in comparison with the steel with 5×10-6Ce. The microstructure analysis shows that the fracture morphology of heat-affected zone of the steel with 23×10-6Ce appears dimples, which is an indication of a higher toughness. With increasing the heat input from 25 kJ/cm to 100 kJ/cm, the average grain size of the original austenite in the heat-affected zones of the steels with 5×10-6Ce and 23×10-6Ce was increased by 75.6% and 52.4%, respectively. It indicates that the growth of the original austenite grain during welding is suppressed with increasing the Ce content in the steel. Comparison of the microstructure shows that rare earth Ce can delay the formation of upper bainite structure in the heat-affected zone. Through the high temperature confocal microscope, it was observed that the rare earth inclusions pinned on the original austenite grain boundary, which can effectively restrain the grain growth during the welding process. It provides an evidence showing the mechanism of improvement in the heat-affected zone in the welding of the high strength steel by rare earth Ce. The present study demonstrates the rare earth oxide metallurgy can improve the weldability of the high strength steel.
|
Received: 18 February 2020
|
|
[1] |
Kanazawa S, Nakashima A, Okamoto K, et al. Improved toughness of weld fussion zone by fine TiN particles and development of a steel for large heat input welding [J]. Tetsu Hagané, 1975, 61: 2589
|
|
(金沢 正午, 中島 明, 岡本 健太郎等. 微細TiNによる溶接ボンド部靱性の改善と大入熱溶接用鋼の開発 [J]. 鉄と鋼, 1975, 61: 2589)
|
[2] |
Kasamatsu Y, Takashima S, Hosoya T. Effect of titanium and nitrogen on toughness of heat-affected zone of steel plate with tensile strength of 50 kg/mm2 in high heat input welding [J]. Tetsu Hagané, 1979, 65: 1232
|
|
(笠松 裕, 高嶋 修嗣, 細谷 隆司. 50 kg/mm2級高張力鋼板の大入熱溶接熱影響部の靱性におよぼすTiおよびN量の影響 [J]. 鉄と鋼, 1979, 65: 1232)
|
[3] |
Wen B, Song B, Pan N, et al. Effect of austenitizing temperature on microstructure in 16Mn steel treated by cerium [J]. Int. J. Miner. Metall. Mater, 2011, 18: 652
|
[4] |
Yamamoto K, Hasegawa T, Takamura J. Effect of B on the intra-granular ferrite formation in Ti-oxides bearing steels [J]. Tetsu Hagané, 1993, 79: 1169
|
|
(山本 広一, 長谷川 俊永, 高村 仁一. 含Tiオキサイド鋼における粒内フェライト変態におよぼすBの効果 [J]. 鉄と鋼, 1993, 79: 1169)
|
[5] |
Kojima A, Kiyose A, Uemori R, et al. Super high HAZ toughness technology with fine microstructure imparted by fine particles [J]. Nippon Steel Tech. Rep., 2004, 380: 2
|
[6] |
Minagawa M, Ishida K, Funatsu Y, et al. 390 MPa yield strength steel plate for large heat-input welding for large container ships [J]. Nippon Steel Tech. Rep., 2004, 380: 6
|
[7] |
Kojima A, Yoshii K I, Hada T, et al. Development of high HAZ toughness steel plates for box columns with high heat input welding [J]. Nippon Steel Tech. Rep., 2004, 380: 33
|
[8] |
Tomita Y, Okawa T. Effect of modified heat-treatment on mechanical properties of 300M steel [J]. Mater. Sci. Technol., 1995, 11: 245
doi: 10.1179/mst.1995.11.3.245
|
[9] |
Yang J, Xu L Y, Zhu K, et al. Improvement of HAZ toughness of steel plate for high heat input welding by inclusion control with Mg deoxidation [J]. Steel Res. Int., 2015, 86: 619
doi: 10.1002/srin.v86.6
|
[10] |
Lee W S, Su T T. Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions [J]. J. Mater. Process. Technol., 1999, 87: 198
doi: 10.1016/S0924-0136(98)00351-3
|
[11] |
Youngblood J L, Raghavan M. Correlation of microstructure with mechanical properties of 300M steel [J]. Metall. Trans., 1977, 8A: 1439
|
[12] |
Ritchie R O, Francis B, Server W L. Evaluation of toughness in AISI 4340 alloy steel austenitized at low and high temperatures [J]. Metall. Trans., 1976, 7A: 831
|
[13] |
Chang T L, Tsay L W, Chen C. Influence of gaseous hydrogen on the notched tensile strength of D6ac steel [J]. Mater. Sci. Eng., 2001, A316: 153
|
[14] |
Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Design of novel high strength bainitic steels: Part 1 [J]. Mater. Sci. Technol., 2001, 17: 512
|
[15] |
Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Design of novel high strength bainitic steels: Part 2 [J]. Mater. Sci. Technol., 2001, 17: 517
|
[16] |
Li Y J. Welding of High Strength Steel [M]. Beijing: Metallurgical Industry Press, 2010: 89
|
|
(李亚江. 高强钢的焊接 [M]. 北京: 冶金工业出版社, 2010: 89)
|
[17] |
Wen T, Hu X F, Song Y Y, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel [J]. Acta Metall. Sin., 2014, 50: 447
|
|
(温 涛, 胡小锋, 宋元元等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响 [J]. 金属学报, 2014, 50: 447)
|
[18] |
Wen T, Hu X F, Yan D S, et al. Effect of V contents on microstructure and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel [J]. Mater. Sci. Forum, 2014, 788: 304
|
[19] |
Wen T, Hu X F, Song Y Y, et al. Carbides and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel with different V contents [J]. Mater. Sci. Eng., 2013, A588: 201
|
[20] |
Zhang M, Wang Q, Li J H, et al. Microstructure numerical simulation of weld pool in rapid solidification [J]. Trans. China Weld. Inst., 2013, 34(7): 1
|
|
(张 敏, 汪 强, 李继红等. 焊接熔池快速凝固过程的微观组织演化数值模拟 [J]. 焊接学报, 2013, 34(7): 1)
|
[21] |
Wang L M. Application of Rare Earth in Low Alloy and Alloy Steel [M]. Beijing: Metallurgical Industry Press, 2016: 39
|
|
(王龙妹. 稀土在低合金及合金钢中的应用 [M]. 北京: 冶金工业出版社, 2016: 39)
|
[22] |
Wan X L, Wu K M, Wang H H, et al. Applications of oxide metallurgy technology on high heat input welding steel [J]. China Metall., 2015, 25(6): 6
|
|
(万响亮, 吴开明, 王恒辉等. 氧化物冶金技术在大线能量焊接用钢的应用 [J]. 中国冶金, 2015, 25(6): 6)
|
[23] |
Song Y, Wu G P, Wu T L. Application of oxide metallurgy technique in improving microstructure and property of steels [J]. China Metall., 2012, 22(6): 1
|
|
(宋 宇, 武国平, 吴天礼. 氧化物冶金技术在改善钢材组织和性能中的应用 [J]. 中国冶金, 2012, 22(6): 1)
|
[24] |
Zhou D W, Peng P, Xu S H, et al. Research and application of rare earth in steel [J]. Res. Stud. Foundry Equip., 2004, (3): 35
|
|
(周惦武, 彭 平, 徐少华等. 稀土元素在钢中的应用与研究 [J]. 铸造设备研究, 2004, (3): 35)
|
[25] |
Chai F, Yang C F, Su H, et al. Effect of magnesium on inclusion formation in Ti-killed steels and microstructural evolution in welding induced coarse-grained heat affected zone [J]. J. Iron Steel Int., 2009, 16: 69
|
[26] |
Huang Y, Cheng G G, Li S J, et al. Effect of cerium on the behavior of inclusions in H13 steel [J]. Steel Res. Int., 2018, 89: 1800371
|
[27] |
Su D D. Metallography of Steel at elevated temperature [M]. Tianjin: Tianjin University Press, 2007: 1
|
|
(苏德达. 钢的高温金相学 [M]. 天津: 天津大学出版社, 2007: 1)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|