Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (11): 1485-1494    DOI: 10.11900/0412.1961.2020.00110
Current Issue | Archive | Adv Search |
Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy
ZHU Weiqiang1, YU Muzhi1, TANG Xu1, CHEN Xiaoyang1, XU Zhengbing1,2(), ZENG Jianmin1,2
1 Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China
2 Center of Ecological Collaborative Innovation for Aluminum Industry in Guangxi, Guangxi University, Nanning 530004, China
Cite this article: 

ZHU Weiqiang, YU Muzhi, TANG Xu, CHEN Xiaoyang, XU Zhengbing, ZENG Jianmin. Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy. Acta Metall Sin, 2020, 56(11): 1485-1494.

Download:  HTML  PDF(3184KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to investigate the effect of Er and Si on the thermal conductivity and latent heat of phase transformation of Al-based heat storage alloy, the alloys with Si contents (mass fraction) of 12%, 14% and 16% were prepared. The Er contents of the alloys were 0.2%, 0.4%, 0.6% and 0.8%, respectively. According to the specific heat capacity, thermal diffusivity and density measured by experiments, the thermal conductivity of the alloy was calculated. In addition, the latent heat of phase transformation of alloy was measured and calculated theoretically by using empirical formula. The influence of Er and Si contents on the latent heat of transformation was analyzed by variance. The results show that Er can effectively improve the morphology of primary Si and refine the microstructure in Al-Si alloy. When the content of Si is 16%, the latent heat of the alloy is 414.8 and 406.5 J/g respectively when adding 0.2% and 0.6% Er. When the contribution of the specific heat capacity difference between solid and liquid phases to entropy is considered, the calculated latent heat of phase transformation of the alloy is smaller than that not considered. The theoretical calculation models of the latent heat values of Al-12Si-xEr and Al-16Si-xEr are modified, and the latent heat values calculated by the modified model are more consistent with the measured values.The analysis of variance showed that under the condition of significant level p=0.05, the content of Si has a significant effect on the latent heat of phase transformation of the material.

Key words:  Er      Si      aluminum-based heat storage alloy      thermal conductivity      latent heat of phase transformation     
Received:  07 April 2020     
ZTFLH:  TG146.21  
Fund: National Natural Science Foundation of China(51961008);National Natural Science Foundation of China(51401057)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00110     OR     https://www.ams.org.cn/EN/Y2020/V56/I11/1485

Fig.1  OM images of Al-14Si (a, b), Al-14Si-0.2Er (c, d), Al-14Si-0.4Er (e, f), Al-14Si-0.6Er (g, h) and Al-16Si-0.6Er (i, j)
Fig.2  SEM image (a) and EDS result (b) of Al-16Si-0.6Er alloy
Fig.3  The specific heat capacity of alloy changes with temperature (T) and Er content(a) Al-12Si-xEr (b) Al-14Si-xEr (c) Al-16Si-xEr
Fig.4  The thermal diffusivity of alloy changes with temperature and Er content(a) Al-12Si-xEr (b) Al-14Si-xEr (c) Al-16Si-xEr
Fig.5  Bar chart of alloy density
Fig.6  The thermal conductivity of the alloy changes with temperature and Er content(a) Al-12Si-xEr (b) Al-14Si-xEr (c) Al-16Si-xEr
Fig.7  Measured and calculated values of latent heat of phase transformation of Al-12Si-xEr (a), Al-14Si-xEr (b) and Al-16Si-xEr (c) alloys
ElementTmMΔScp / (J·mol-1·K-1)
Kg·mol-1J·g-1·K-1Solid stateLiquid state
Al93427.00.42525.329.16
Si168528.11.06126.027.20
Er1795167.20.43828.136.60
Table 1  Thermophysical property data of Al, Si and Er elements [26]
SourceSSdfσFSig.
Calibration model6172.87761028.81311.1410.002
Intercept2082088.81712082088.81722546.3610.000
Content of Si5445.79722722.89929.4860.000
Content of Er727.0804181.7701.9680.193
Error738.776892.347
Total2089000.47015
Table 2  Coefficients of variance analysis for latent calorific values varying with Si and Er contents
[1] Hua J S, Jiao Y, Wang J H. Study on properties of Al-Si/Al2O3 composite phase change material for thermal energy storage [J]. Hot Work. Technol., 2012, 41(8): 72
(华建社, 焦 勇, 王建宏. Al-Si/Al2O3高温复合相变蓄热材料的研究 [J]. 热加工工艺, 2012, 41(8): 72)
[2] Lu Z Q, Zhu H W, Han X L, et al. Integrated modelling and algorithm of material delivery and line-side storage for aircraft moving assembly lines [J]. Int. J. Prod. Res., 2019, 57: 5842
[3] Flury S, Dulla F A, Peutzfeldt A. Repair bond strength of resin composite to restorative materials after short- and long-term storage [J]. Dent. Mater., 2019, 35: 1205
[4] Liu L F, Chen J Y, Qu Y, et al. Preparation and thermal properties of low melting point alloy/expanded graphite composite phase change materials used in solar water storage system [J]. Sol. Energy Mater. Sol. Cells, 2019, 201: 110112
[5] Perraudin D Y S, Binder S R, Rezaei E, et al. Phase change material systems for high temperature heat storage [J]. Chimia (Aarau), 2015, 69: 780
[6] Zhou J, Li H X, Yu Y F, et al. Research on aluminum component change and phase transformation of TiAl-based alloy in electron beam selective melting process under multiple scan [J]. Intermetallics, 2019, 113: 106575
[7] Zhang G C, Xu Z, Chen Y F, et al. Progress in metal-based phase change materials for thermal energy storage applications [J]. Energy Storage Sci. Technol., 2012, 1: 74
(张国才, 徐 哲, 陈运法等. 金属基相变材料的研究进展及应用 [J]. 储能科学与技术, 2012, 1: 74)
[8] Zhang H L, Fang X D, Zhao Y J. Progress in phase change materials and technologies [J]. Mater. Rev., 2014, 28(13): 26
(张贺磊, 方贤德, 赵颖杰. 相变储热材料及技术的研究进展 [J]. 材料导报, 2014, 28(13): 26)
[9] Toyoda N K, Watanabe K J, Watanabe M, et al. Studies on a heat storage container with phase change material [J]. Trans. Jpn Soc. Refrig. Air Cond. Eng., 2012, 1: 13
[10] Chen G S, Wang B Q, Zhang R Y, et al. Research of thermal storage characteristics of Al-Si alloy as PCM [J]. Mater. Res. Appl., 2010, 4: 255
(陈观生, 王波群, 张仁元等. 金属相变储热材料铝硅合金储热特性研究 [J]. 材料研究与应用, 2010, 4: 255)
[11] Sheng N, Zhu C Y, Saito G, et al. Development of a microencapsulated Al-Si phase change material with high-temperature thermal stability and durability over 3000 cycles [J]. J. Mater. Chem., 2018, 6: 18143
[12] Zhang H T, Wang D T, Qin K, et al. Effect of compound modification and cooling rate on microstructure and mechanical properties of Al-25%Si alloy [J]. Mater. Sci. Forum, 2017, 877: 27
[13] Li Q L, Xia T D, Lan Y F, et al. Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al-20%Si alloy [J]. J. Alloys Compd., 2013, 562: 25
[14] Zhu S, Qiu L, Wang X M, et al. Effects of Er addition on Microstructure and mechanical properties of Al-12Si alloy [J]. Hot Work. Technol., 2018, 47(18): 78
(朱 胜, 邱 六, 王晓明等. Er添加对Al-12Si铝硅合金组织和力学性能的影响 [J]. 热加工工艺, 2018, 47(18): 78)
[15] Wang L P, Cao G J, Zhang J J, et al. Effect of combined RE-Ba-Sb addition on microstructure and mechanical properties of 4004 aluminum alloy [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2236
[16] Li X Y, Lu Y L, Wang J, et al. Effect of rare earth erbium on microstructure and mechanical properties of A356 aluminum alloy [J]. J. Mater. Eng., 2018, 46(1): 67
(李晓燕, 卢雅琳, 王 健等. 稀土Er对A356铝合金微观组织和力学性能的影响[J]. 材料工程, 2018, 46(1): 67)
[17] Fan Y G, Zhang X H, Tang H Q, et al. Influence of RE on mechanical properties of optimized Al-Si casting alloy [J]. Hot Work. Technol., 2012, 41(5): 49
(范应光, 张修海, 汤宏群等. RE对改良铸造铝硅合金力学性能的影响 [J]. 热加工工艺, 2012, 41(5): 49)
[18] Cheng X M, He G, Wu X W. Application and research progress of aluminum-based thermal storage materials in solar thermal power [J]. Mater. Rev., 2010, 24(17): 139
(程晓敏, 何 高, 吴兴文. 铝基合金储热材料在太阳能热发电中的应用及研究进展 [J]. 材料导报, 2010, 24(17): 139)
[19] Inoue A, Bizen Y, Kimura H M, et al. Compositional range, thermal stability, hardness and electrical resistivity of amorphous alloys in Al-Si (or Ge)-transition metal systems [J]. J. Mater. Sci., 1998, 23: 3640
[20] Hu G X, Cai X. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiaotong University Press, 2000: 232
(胡赓祥, 蔡 珣. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2000: 232)
[21] Raghavan V. Al-Er-Si (aluminum-erbium-silicon) [J]. J. Phase Equilib., 2010, 31: 44
[22] Chen X Z, Sieve B, Henning R, et al. Ln2Al3Si2 (Ln= Ho, Er, Tm): New silicides from molten aluminum—Determination of the Al/Si distribution with neutron crystallography and metamagnetic transitions [J]. Angew. Chem., 1999, 38: 693
[23] Deng C Z, Liu Z Y, Zhou J, et al. Study on thermal stability of 2524 aluminum alloy [J]. Trans. Mater. Heat Treat., 2009, 30(5): 87
[24] Guo C Q. The method of reckoning up titanium alloy density form its element contents [J]. J. Mater. Eng., 1993, (6): 10
(郭超祺. 钛合金元素密度法推导计算合金材料密度的研究 [J]. 材料工程, 1993, (6): 10)
[25] Li L B, Sun Y F. Manual of Physical Properties of Metal Materials [M]. Beijing: Mechanical Industry Press, 2011: 102
(李立碑, 孙玉福. 金属材料物理性能手册 [M]. 北京: 机械工业出版社, 2011: 102)
[26] Ke C. Dictionary of Functional Metals [M]. Beijing: Metallurgical Industry Press, 1999: 68
(柯 成. 金属功能材料词典 [M]. 北京: 冶金工业出版社, 1999: 68)
[27] Li X S, Cai A H, Zeng J J. Effect of Fe on the microstructure and the thermal storage performances of high-silicon aluminum alloy [J]. Adv. Mater. Res., 2014, 915-916: 775
[28] Wang Z P, Tian H Q, Wang K Z, et al. Preparation and study on the matrix of aluminum potassium sulfate eutectic phase change heat storage materials [J]. J. Synth. Cryst, 2013, 42: 491
(王智平, 田禾青, 王克振等. 钾明矾基低共熔相变储热材料的制备与研究 [J]. 人工晶体学报, 2013, 42: 491)
[29] Zhang G C, Li J Q, Ma B Q, et al. Oxidation resistance and plating encapsulation of Cu-based alloys as phase change materials for high-temperature heat storage [J]. Key Eng. Mater., 537: 292
[30] Wang H, Li Y D, Luo X M, et al. Development and research progress of high thermal conductivity aluminum alloys [J]. Foundry, 2019, 68: 1104
(王 慧, 李元东, 罗晓梅等. 高导热铝合金的开发与研究进展 [J]. 铸造, 2019, 68: 1104)
[31] Chen W M, Bai X M. Temperature and composition dependent thermal conductivity model for U-Zr alloys [J]. J. Nucl. Mater., 2018, 507: 360
[32] Zhang R Y. Phase Change Materials and Phase Change Energy Storage Technology [M]. Beijing: Science Press, 2009: 11
(张仁元. 相变材料与相变储能技术 [M]. 北京: 科学出版社, 2009: 11)
[33] Zhang Y P, Su Y H, Ge X S. Prediction of the melting temperature and the fusion heat of (quasi-) eutectic PCM [J]. J. China Univ. Sci. Technol., 1995, (4): 474
(张寅平, 苏跃红, 葛新石. (准)共晶系相变材料融点及融解热的理论预测 [J]. 中国科学技术大学学报, 1995, (4): 474)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[6] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[7] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[8] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[9] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[10] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[11] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[12] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[13] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[14] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[15] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
No Suggested Reading articles found!