Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1197-1206    DOI: 10.11900/0412.1961.2017.00279
Orginal Article Current Issue | Archive | Adv Search |
Research of Biodegradable Mg-Based Metals as Bone Graft Substitutes
Jiahui DONG1,2, Lili TAN1, Ke YANG1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

Jiahui DONG, Lili TAN, Ke YANG. Research of Biodegradable Mg-Based Metals as Bone Graft Substitutes. Acta Metall Sin, 2017, 53(10): 1197-1206.

Download:  HTML  PDF(7320KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bone defects are very challenging in orthopedic practice due to a variety of reasons. Bone repair requires four critical elements, biocompatibility, osteoconduction, osteoinduction and osteogenesis. The autografts still exist some problems for applications such as the limitation of available autogenous bones and post-operative complications, although they are considered as the “gold standard” in bony defect repairs. Generally the synthetic bone substitutes do not possess osteoinductive and osteogenic activities. Therefore, the clinical bone grafts and bone-graft substitutes have their own shortcomings in the repair of bone defects. Biodegradable magnesium-based metals, including pure magnesium and magnesium alloys, have been concerned and studied recently due to their biodegradation, good biocompatibility and similar elastic modulus and density with bone tissue. This paper summarizes the biological behavior of magnesium-based metals for bone defects repair application, including ability of promoting osteogenesis, osteoconduction and potential osteoinduction, as well as some particular biofunctions such as antibacterial and antitumor properties. The great advantages and potentials of magnesium in bone defects repair can not be denied as a promising class of bone substitutes, although further researches are still needed for clinical applications.

Key words:  bone defect      bone repair      osteogenesis      Mg-based metal      biodegradable     
Received:  06 July 2017     
ZTFLH:  R318.08  
Fund: Supported by National Natural Science Foundation of China (Nos.81401773 and 31500777)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00279     OR     https://www.ams.org.cn/EN/Y2017/V53/I10/1197

Fig.1  The comparison of compressive strength for natural bone, commercial bone-grafting products and magnesium-based metals[21]
Fig.2  HE stained bone surrounding Mg-6Zn rods for 6 weeks (a) and 18 weeks (b) post-implantation[26]
Fig.3  CT reconstructions (3-D display) of the bone defects: Mg alloy after 2 months (a) and 4 months (c); CaSO4 after 2 months (b) and 4 months (d)[27]
Fig.4  Schematic diagram shows osteogenic differentiation of periosteum-dirved stem cells (PDSC) induced by implant-derived Mg2+ [29]
Fig.5  Histological work-up of the specimens (The ?gure gives an example of ultrathin grindings stained according to the Laczkó-Lévai staining technique, showing pink-staining bone, blue-staining cartilage and grey-staining ?brous tissue)[37]
Fig.6  Histological thin slides of ZX50 (a, c, e, g) and WZ21 (b, d, f, h) pins in a Levai-Laczko staining[39]
Fig.7  The colony-forming unit (CFU)/mL of S. aureus suspension after incubation with different samples[40]
Fig.8  The hydrogen release volumes of P-Mg and AH-Mg samples as a function of the immersion time in SBF (a), the OD values of hydroxyl radical concentration in different systems (b), the relative optical dersity (OD) values of free radicals concentration in MG63 cultured on P-Mg and AH-Mg samples for 4, 6, and 8 h (c)[51]
[1] Greenwald A S, Boden S D, Goldberg V M, et al.Bone-graft substitutes: Facts, fictions, and applications[J]. J. Bone Joint Surg. Am., 2001, 83: 98
[2] Finkemeier C G.Bone-grafting and bone-graft substitutes[J]. J. Bone Joint Surg. Am., 2002, 84: 454
[3] van Heest A, Swiontkowski M. Bone-graft substitutes[J]. Lancet, 1999, 353: S28
[4] Calori G M, Mazza E, Colombo M, et al.The use of bone-graft substitutes in large bone defects: Any specific needs?[J]. Injury, 2011, 42: S56
[5] Einhorn T A.Enhancement of fracture-healing[J]. J. Bone Joint Surg. Am., 1995, 77: 940
[6] Giannoudis P V, Dinopoulos H, Tsiridis E.Bone substitutes: An update[J]. Injury, 2005, 36: S20
[7] van der Stok J. Bone graft substitutes developed for trauma and orthopaedic surgery[J]. Ned. Tijdschr. Trauma., 2015, 23: 84
[8] Bhatt R A, Rozental T D.Bone graft substitutes[J]. Hand Clin., 2012, 28: 457
[9] Campana V, Milano G, Pagano E, et al.Bone substitutes in orthopaedic surgery: From basic science to clinical practice[J]. J. Mater. Sci. Mater. Med., 2014, 25: 2445
[10] Morone M A, Boden S D, Hair G, et al.The Marshall R. Urist young investigator award. gene expression during autograft lumbar spine fusion and the effect of bone morphogenetic protein 2[J]. Clin. Orthop. Relat. Res., 1998, (351): 252
[11] Goldberg V M.The biology of bone grafts[J]. Orthopedics, 2003, 26: 923
[12] Zipfel G J, Guiot B H, Fessler R G.Bone grafting[J]. Neurosurg Focus, 2003, 14: e8
[13] Baumhauer J, Pinzur M S, Donahue R, et al.Site selection and pain outcome after autologous bone graft harvest[J]. Foot Ankle Int., 2014, 35: 104
[14] Charalambides C, Beer M, Cobb A G.Poor results after augmenting autograft with xenograft (Surgibone) in hip revision surgery[J]. Acta Orthop., 2005, 76: 544
[15] Nandi S K, Roy S, Mukherjee P, et al.Orthopaedic applications of bone graft & graft substitutes: A review[J]. Indian J. Med. Res., 2010, 132: 15
[16] Robin B N, Chaput C D, Zeitouni S, et al.Cytokine-mediated inflammatory reaction following posterior cervical decompression and fusion associated with recombinant human bone morphogenetic protein-2: A case study[J]. Spine, 2010, 35: E1350
[17] Song G L, Atrens A.Corrosion mechanisms of magnesium alloys[J]. Adv. Eng. Mater., 1999, 1: 11
[18] Thormann U, Alt V, Heimann L, et al.The biocompatibility of degradable magnesium interference screws: An experimental study with sheep[J]. Biomed. Res. Int., 2015, 2015: 943603
[19] Witte F, Ulrich H, Rudert M, et al.Biodegradable magnesium scaffolds: Part 1: Appropriate inflammatory response[J]. J. Biomed. Mater. Res., 2007, 81A: 748
[20] Staiger M P, Pietak A M, Huadmai J, et al.Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials, 2006, 27: 1728
[21] Liu C, Wan P, Tan L L, et al.Preclinical investigation of an innovative magnesium-based bone graft substitute for potential orthopaedic applications[J]. J. Orthop. Trans., 2014, 2: 139
[22] Xie X W, Huang J, Li N, et al.Progress of magnesium ions and magnesium alloy implant application in the clinical orthopaedics[J]. Chin. J. Tiss. Eng. Res., 2012, 16: 7317(谢兴文, 黄晋, 李宁等. 镁及镁合金植入体在骨科临床中的应用与进展[J]. 中国组织工程研究, 2012, 16: 7317)
[23] Gu X N, Zheng Y F, Cheng Y, et al.In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30: 484
[24] Gao J C, Qiao L Y, Li L C, et al.Hemolysis effect and calcium-phosphate precipitation of heat-organic-film treated magnesium[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 539
[25] Li L C, Gao J C, Wang Y.Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid[J]. Surf. Coat. Technol., 2004, 185: 92
[26] Zhang S X, Zhang X N, Zhao C L, et al.Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomater., 2010, 6: 626
[27] Zhang Q, Lin X, Qi Z R, et al.Magnesium alloy for repair of lateral Tibial Plateau defect in minipig model[J]. J. Mater. Sci. Technol., 2013, 29: 539
[28] Witte F, Ulrich H, Palm C, et al.Biodegradable magnesium scaffolds: Part II: Peri-implant bone remodeling[J]. J. Biomed. Mater. Res., 2007, 81A: 757
[29] Zhang Y F, Xu J K, Ruan Y C, et al.Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat. Med., 2016, 22: 1160
[30] Burmester A, Willumeit-R?mer R, Feyerabend F.Behavior of bone cells in contact with magnesium implant material[J]. J. Biomed. Mater. Res. Appl. Biomater., 2017, 105B: 165
[31] Zhai Z J, Qu X H, Li H W, et al.The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling[J]. Biomaterials, 2014, 35: 6299
[32] Zreiqat H, Howlett C R, Zannettino A, et al.Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants[J]. J. Biomed. Mater. Res., 2002, 62: 175
[33] Yoshizawa S, Brown A, Barchowsky A, et al.Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation[J]. Acta Biomater., 2014, 10: 2834
[34] Willbold E, Kalla K, Bartsch I, et al.Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal[J]. Acta Biomater., 2013, 9: 8509
[35] Yang T T, Ni Y X, Zhai J J, et al.Microstructure, mechanical properties, In Vitro degradation and cytotoxicity of Mg-4Zn-3HA alloy for biodegradable implant materials[J]. J. Hard Tiss. Biol., 2014, 23: 111
[36] Asagiri M, Takayanagi H.The molecular understanding of osteoclast differentiation[J]. Bone, 2007, 40: 251
[37] Castellani C, Lindtner R A, Hausbrandt P, et al.Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control[J]. Acta Biomater., 2011, 7: 432
[38] Lindtner R A, Castellani C, Tangl S, et al.Comparative biomechanical and radiological characterization of osseointegration of a biodegradable magnesium alloy pin and a copolymeric control for osteosynthesis[J]. J. Mech. Behav. Biomed. Mater., 2013, 28: 232
[39] Kraus T, Fischerauer S F, H?nzi A C, et al.Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone[J]. Acta Biomater., 2012, 8: 1230
[40] Liu C, Fu X K, Pan H B, et al.Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects[J]. Sci. Rep., 2016, 6: 27374
[41] Boyan B D, Weesner T C, Lohmann C H, et al.Porcine fetal enamel matrix derivative enhances bone formation induced by demineralized freeze dried bone allograft in vivo[J]. J. Periodontol., 2000, 71: 1278
[42] Huang J J, Ren Y B, Zhang B C, et al.Study on biocompatility of magnesium and its alloys[J]. Rare Met. Mater. Eng., 2007, 36: 1102(黄晶晶, 任伊宾, 张炳春等. 镁及镁合金的生物相容性研究[J]. 稀有金属材料与工程, 2007, 36: 1102)
[43] Reifenrath J, Badar M, Dziuba D, et al.Assessment of cellular reactions to magnesium as implant material in comparison to titanium and to glyconate using the mouse tail model[J]. J. Appl. Biomater. Funct. Mater., 2013, 11: e89
[44] Ren L, Lin X, Tan L L, et al.Effect of surface coating on antibacterial behavior of magnesium based metals[J]. Mater. Lett., 2011, 65: 3509
[45] Krulwich T A, Sachs G, Padan E.Molecular aspects of bacterial pH sensing and homeostasis[J]. Nat. Rev. Microbiol., 2011, 9: 330
[46] Li Y, Liu L N, Wan P, et al.Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations[J]. Biomaterials, 2016, 106: 250
[47] Zhang Y, Ren L, Li M, et al.Preliminary study on cytotoxic effect of biodegradation of magnesium on cancer cells[J]. J. Mater. Sci. Technol., 2012, 28: 769
[48] ?ekin E, Ipcioglu O M, Erkul B E, et al.The association of oxidative stress and nasal polyposis[J]. J. Int. Med. Res., 2009, 37: 325
[49] Valko M, Rhodes C J, Moncol J, et al.Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chem. Biol. Interact., 2006, 160: 1
[50] Dole M, Wilson F R, Fife W P.Hyperbaric hydrogen therapy: Apossible treatment for cancer[J]. Science, 1975, 190: 152
[51] Ma N, Chen Y M, Yang B C.Magnesium metal—A potential biomaterial with antibone cancer properties[J]. J. Biomed. Mater. Res., 2014, 102A: 2644
[1] SHEN Gang, ZHANG Wentai, ZHOU Chao, JI Huanzhong, LUO En, ZHANG Haijun, WAN Guojiang. Mechanical Properties and Degradation Behavior of Hot-Extruded Zn-2Cu-0.5Zr Alloy[J]. 金属学报, 2022, 58(6): 781-791.
[2] QIAN Yi, YUAN Guangyin. Research Status, Challenges, and Countermeasures of Biodegradable Zinc-Based Vascular Stents[J]. 金属学报, 2021, 57(3): 272-282.
[3] ZHENG Yufeng, XIA Dandan, SHEN Yunong, LIU Yunsong, XU Yuqian, WEN Peng, TIAN Yun, LAI Yuxiao. Additively Manufactured Biodegrabable Metal Implants[J]. 金属学报, 2021, 57(11): 1499-1520.
[4] Zheng MA, Xi LU, Ming GAO, Lili TAN, Ke YANG. Effect of Crevice Corrosion on the Degradation Rate ofFe-30Mn-1C Alloy[J]. 金属学报, 2018, 54(7): 1010-1018.
[5] Yufeng ZHENG,Yuanhao WU. Revolutionizing Metallic Biomaterials[J]. 金属学报, 2017, 53(3): 257-297.
[6] Guangyin YUAN, Jialin NIU. Research Progress of Biodegradable Magnesium Alloys for Orthopedic Applications[J]. 金属学报, 2017, 53(10): 1168-1180.
[7] Lili TAN, Junxiu CHEN, Xiaoming YU, Ke YANG. Recent Advances on Biodegradable MgYREZrMagnesium Alloy[J]. 金属学报, 2017, 53(10): 1207-1214.
[8] Qingchuan WANG, Bingchun ZHANG, Yibin REN, Ke YANG. Research and Application of Biomedical Nickel-Free Stainless Steels[J]. 金属学报, 2017, 53(10): 1311-1316.
[9] Yufeng ZHENG, Hongtao YANG. Research Progress in Biodegradable Metals forStent Application[J]. 金属学报, 2017, 53(10): 1227-1237.
[10] XU Wenli LU Xi TAN Lili YANG Ke. STUDY ON PROPERTIES OF A NOVEL BIODEGRADABLE Fe–30Mn–1C ALLOY[J]. 金属学报, 2011, 47(10): 1342-1347.
No Suggested Reading articles found!