Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1311-1316    DOI: 10.11900/0412.1961.2017.00268
Orginal Article Current Issue | Archive | Adv Search |
Research and Application of Biomedical Nickel-Free Stainless Steels
Qingchuan WANG, Bingchun ZHANG, Yibin REN, Ke YANG()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Qingchuan WANG, Bingchun ZHANG, Yibin REN, Ke YANG. Research and Application of Biomedical Nickel-Free Stainless Steels. Acta Metall Sin, 2017, 53(10): 1311-1316.

Download:  HTML  PDF(2855KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Biomedical nickel-free stainless steels acquire better comprehensive properties than the traditional stainless steels, with wide application prospect in medical devices for bone and vascular repair. As a new biomaterial, in recent years, the excellent properties of nickel-free stainless steels are gradually verified, which is meaningful for developing medical devices with higher safety and biocompatibility. In this paper, the research progress on alloy design, mechanical properties, corrosion resistance and biocompatibility of nickel-free stainless steels and the current application status are reviewed, and the future tendency on research and development for this new metallic biomaterial is also proposed.

Key words:  biomedical stainless steel      nickel-free      high nitrogen      bone repair      vascular stent     
Received:  03 July 2017     
ZTFLH:  TG142.71  
  R318.00  
Fund: Supported by National Natural Science Foundation of China (No.31370976)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00268     OR     https://www.ams.org.cn/EN/Y2017/V53/I10/1311

Fig.1  Constitution diagram for high nitrogen nickelfree stainless steel (HNS) summarized from data of experimental and commercial stainless steels[18] (Solid symbols represent full austenite,opensymbolsrepresent d-ferrite+austenite)
Fig.2  Potentiodynamic curves of 0.76%N (mass fraction) (a) and 0.92%N (b) HNS under different cold working levels[39]
Fig.3  Histological and biomechanical analyses of bone-implant interfaces[43]
(a) histological observation of undecalcified sections: pink tissue-old bone (OB) and crimson tissue-new bone (NB)
(b) percentage of bone-implant contact and new bone area from the histomorphometric measurements (ap<0.05, bp<0.01 when compared to 316L SS; P.I—post implantation)
(c) bonding strength at bone-implant interfaces from push-out test (*—p<0.05)
Fig.4  Neointima formation after coronary stenting in pig was reduced by high nitrogen Ni-free stainless steel stent after 28 d implantation[51]
(a) percentage of in-stent restenosis evaluated using angiography; n=20 and 17 in the 316L and Ni-free stents groups, respectively (*—p<0.05)
(b) representative sections of stented arteries stained with hematoxylin/eosin (L—lumen, N—neointima, M—media)
[1] Park J, Lakes R S.Biomaterials: An Introduction[M]. 3rd Ed., New York: Springer Science & Business Media, 2007: 99
[2] O'Brien B J, Stinson J S, Larsen S R, et al. A platinum-chromium steel for cardiovascular stents[J]. Biomaterials, 2010, 31: 3755
[3] Ren L, Yang K.Bio-functional design for metal implants, a new concept for development of metallic biomaterials[J]. J. Mater. Sci. Technol., 2013, 29: 1005
[4] Talha M, Behera C K, Sinha O P.A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications[J]. Mater. Sci. Eng., 2013, C33: 3563
[5] Yamamoto A, Honma R, Sumita M.Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells[J]. J. Biomed. Mater. Res., 1998, 39: 331
[6] Yang K, Ren Y B, Wan P.High nitrogen nickel-free austenitic stainless steel: A promising coronary stent material[J]. Sci. China Tech. Sci., 2011, 55: 329
[7] Yang K, Ren Y B.Nickel-free austenitic stainless steels for medical applications[J]. Sci. Technol. Adv. Mater., 2010, 11: 014105
[8] Yang K, Ren Y B.Research and development of medical stainless steels[J]. Mater. China, 2010, 29(12): 1(杨柯, 任伊宾. 医用不锈钢的研究与发展[J]. 中国材料进展, 2010, 29(12): 1)
[9] Speidel M O.Properties and applications of high nitrogen steels [A]. Proceedings of the 1st International High Nitro-gen Steels-HNS 88[C]. London: The Institute of Metals, 1989: 92
[10] Schaeffler A L.Constitutional diagram for stainless steel weld metal[J]. Met. Progr., 1949, 56: 680
[11] Hull F C.Delta ferrite and martnesite formation in stainless steels[J]. Weld. J., 1973, 52: 193
[12] Long C J, DeLong W T. The ferrite content of austenitic stainless steel weld metal[J]. Weld. J., 1973, 52: 281S.
[13] Speidel M O, Uggowitzer P J.High manganese, high nitrogen austenitic stainless steels: Their strength and toughness [A]. Proceedings of the High Manganese, High Nitrogen Austenitic Stainless Steels Conference[C]. Chicago: ASM International, 1992: 135
[14] Mudali U K, Raj B.High nitrogen steels and stainless steels: Manufacturing, properties and application[M]. Pangbourne: Alpha Science International, 2004: 50
[15] Klueh R L, Maziasz P J, Lee E H.Manganese as an austenite stabilizer in Fe-Cr-Mn-C steels[J]. Mater. Sci. Eng., 1988, A102: 115
[16] Onozuka M, Saida T, Hirai S, et al.Low-activation Mn-Cr austenitic stainless steel with further reduced content of long-lived radioactive elements[J]. J. Nucl. Mater., 1998, 255: 128
[17] Glownia J, Kalandyk B, Hübner K.Delta ferrite predictions for cast duplex steels with high nitrogen content[J]. Mater. Charact., 2001, 47: 149
[18] Wang Q C, Ren Y B, Yao C F, et al.Residual ferrite and relationship between composition and microstructure in high-nitrogen austenitic stainless steels[J]. Metall. Mater. Trans., 2015, 46A: 5537
[19] Wang Q C, Zhang B C, Yang K.Thermodynamic calculation study on effect of manganese on stability of austenite in high nitrogen stainless steels[J]. Metall. Mater. Trans., 2016, 47A: 3284
[20] Simmons J W, Strain hardening and plastic flow properties of nitrogen-alloyed Fe-17Cr-(8-10)Mn-5Ni austenitic stainless steels[J]. Acta Mater., 1997, 45: 2467
[21] Zhao H C, Ren Y B, Dong J H, et al.Effect of cold deformation on the friction-wear property of a biomedical nickel-free high-nitrogen stainless steel[J]. Acta Metal. Sin.(Engl. Lett.), 2016, 29: 217
[22] Hwang B, Lee T H, Park S J, et al.Correlation of austenite stability and ductile-to-brittle transition behavior of high-nitrogen 18Cr-10Mn austenitic steels[J]. Mater. Sci. Eng., 2011, A528: 7257
[23] Mohammadzadeh R, Akbari A, Mohammadzadeh M.Impact toughness properties of nickel- and manganese-free high nitrogen austenitic stainless steels[J]. Metall. Mater. Trans., 2016, 47A: 6032
[24] Defilippi J, Brickner K, Gilbert E.Ductile-to-brittle transition in austenitic chromium-manganese-nitrogen stainless steels[J]. Trans. Met. Soc. AIME, 1969, 245: 2141
[25] Tomota Y, Nakano J, Xia Y, et al.Unusual strain rate dependence of low temperature fracture behavior in high nitrogen bearing austenitic steels[J]. Acta Mater., 1998, 46: 3099
[26] Tomota Y, Xia Y, Inoue K.Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels[J]. Acta Mater., 1998, 46: 1577
[27] Müllner P. On the ductile to brittle transition in austenitic steel [J]. Mater. Sci. Eng., 1997, A234-236: 94
[28] Wang S T, Yang K, Shan Y Y, et al.Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels[J]. Mater. Sci. Eng., 2008, A490: 95
[29] Tanaka M, Onomoto T, Furusho C, et al.Decrease in the brittle-to-ductile transition temperature in Cu added nickel-free austenitic stainless steels[J]. ISIJ Int., 2014, 54: 1735
[30] Ebara R.Corrosion fatigue crack initiation behavior of stainless steels[J]. Proc. Eng., 2010, 2: 1297
[31] Sudarshan T S, Srivatsan T S, Harvey II D P. Fatigue processes in metals-role of aqueous environments[J]. Eng. Fract. Mech., 1990, 36: 827
[32] Walczak J, Shahgaldi F, Heatley F.In vivo corrosion of 316L stainless-steel hip implants: Morphology and elemental compositions of corrosion products[J]. Biomaterials, 1998, 19: 229
[33] Misawa T, Tanabe H.In-situ observation of dynamic reacting species at pit precursors of nitrogen-bearing austenitic stainless steels[J]. ISIJ Int., 1996, 36: 787
[34] Olsson C O A. The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS[J]. Corros. Sci., 1995, 37: 467
[35] Ratner B D, Hoffman A S, Schoen F J, et al.Biomaterials Science: An Introduction to Materials in Medicine [M]. 2nd Ed., New York: Academic Press, 2004: 141
[36] Kumar B R, Mahato B, Singh R.Influence of cold-worked structure on electrochemical properties of austenitic stainless steels[J]. Metall. Mater. Trans., 2007, 38A: 2085
[37] Fu Y, Wu X, Han E, et al.Influence of cold work on pitting corrosion behavior of a high nitrogen stainless steel[J]. J. Electrochem. Soc., 2008, 155: C455
[38] Ren Y B, Zhao H C, Liu W P, et al.Effect of cold deformation on pitting corrosion of 00Cr18Mn15Mo2N0.86 stainless steel for coronary stent application[J]. Mater. Sci. Eng., 2016, C60: 293
[39] Wang Q C, Zhang B C, Ren Y B, et al.Eliminating detrimental effect of cold working on pitting corrosion resistance in high nitrogen austenitic stainless steels[J]. Corros. Sci., 2017, 123: 351
[40] Li M H, Yin T Y, Wang Y Z, et al.Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro[J]. Mater. Sci. Eng., 2014, C43: 641
[41] Ma T C, Wan P, Cui Y Y, et al.Cytocompatibility of high nitrogen nickel-free stainless steel for orthopedic implants[J]. J. Mater. Sci. Technol., 2012, 28: 647
[42] Fini M, Nicoli A N, Torricelli P, et al.A new austenitic stainless steel with negligible nickel content: An in vitro and in vivo comparative investigation[J]. Biomaterials, 2003, 24: 4929
[43] Yu Y Q, Ding T T, Xue Y, et al.Osteoinduction and long-term osseointegration promoted by combined effects of nitrogen and manganese elements in high nitrogen nickel-free stainless steel[J]. J. Mater. Chem., 2016, 4B: 801
[44] Ren Y B, Yang K, Zhang B C.In vitro study of platelet adhesion on medical nickel-free stainless steel surface[J]. Mater. Lett., 2005, 59: 1785
[45] Wan P, Ren Y B, Zhang B C, et al.Effect of nitrogen on blood compatibility of nickel-free high nitrogen stainless steel for biomaterial[J]. Mater. Sci. Eng., 2010, C30: 1183
[46] Yang J, Black J.Competitive binding of chromium, cobalt and nickel to serum proteins[J]. Biomaterials, 1994, 15: 262
[47] K?ster R, Vieluf D, Kiehn M, et al.Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis[J]. Lancet, 2000, 356: 1895
[48] Saito T, Hokimoto S, Oshima S, et al.Metal allergic reaction in chronic refractory in-stent restenosis[J]. Cardiovasc. Revasc. Med., 2009, 10: 17
[49] Li L M, Pan S, Zhou X H, et al.Reduction of in-stent restenosis risk on nickel-free stainless steel by regulating cell apoptosis and cell cycle[J]. PLoS One, 2013, 8: e62193
[50] Li L M, An L W, Zhou X H, et al.Biological behaviour of human umbilical artery smooth muscle cell grown on nickel-free and nickel-containing stainless steel for stent implantation[J]. Sci. Rep., 2016, 6: 18762
[51] Fujiu K, Manabe I, Sasaki M, et al.Nickel-free stainless steel avoids neointima formation following coronary stent implantation[J]. Sci. Technol. Adv. Mater., 2012, 13: 064218
[52] Zhang B, Chen M, Zheng B, et al.A novel high nitrogen nickel-free coronary stents system: Evaluation in a porcine model[J]. Biomed. Environ. Sci., 2014, 27: 289
[53] Wang Q C, Chen S S, Yang K, et al.In vivo study on new coronary stents made of nickel-free high-nitrogen stainless steel [A]. TMS 2017 146th Annual Meeting & Exhibition[C]. San Diego: California, USA, 2017
[54] Vlahos J, Songer M N, Davenport K.Cannulated bone screw [P]. US Pat, 8623060 B2, 2014
[55] Premier coronary stent system [EB/OL].
[1] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[2] QIAN Yi, YUAN Guangyin. Research Status, Challenges, and Countermeasures of Biodegradable Zinc-Based Vascular Stents[J]. 金属学报, 2021, 57(3): 272-282.
[3] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[4] Zheng MA, Xi LU, Ming GAO, Lili TAN, Ke YANG. Effect of Crevice Corrosion on the Degradation Rate ofFe-30Mn-1C Alloy[J]. 金属学报, 2018, 54(7): 1010-1018.
[5] Yibin REN, Haochuan ZHAO, Ke YANG. Study on Lightweight Design and Biomechanical Property of High Nitrogen Nickel Free Stainless Steel Plate: Effect of Thickness Thinning[J]. 金属学报, 2017, 53(10): 1331-1336.
[6] Jiahui DONG, Lili TAN, Ke YANG. Research of Biodegradable Mg-Based Metals as Bone Graft Substitutes[J]. 金属学报, 2017, 53(10): 1197-1206.
[7] Xiaonong ZHANG, Minchao ZUO, Shaoxiang ZHANG, Hongliu WU, Wenhui WANG, Wenzhi CHEN, Jiahua NI. Advances in Clinical Research of Biodegradable Stents[J]. 金属学报, 2017, 53(10): 1215-1226.
[8] Yanxin QIAO,Shuo WANG,Bin Liu,Yugui ZHENG,Huabing LI,Zhouhua JIANG. SYNERGISTIC EFFECT OF CORROSION AND CAVITATION EROSION OF HIGH NITROGEN STAINLESS STEEL[J]. 金属学报, 2016, 52(2): 233-240.
[9] LI Dongjie, LU Shanping, LI Dianzhong, LI Yiyi. INVESTIGATION OF THE MICROSTRUCTURE AND IMPACT PROPERTIES OF THE HIGH NITROGEN STAINLESS STEEL WELD[J]. 金属学报, 2013, 49(2): 129-136.
[10] WANG Songtao; YANG Ke; SHAN Yiyin; LI Laifeng. Effects of Cold Deformation on Microstructure And Mechanical Behavior of a High Nitrogen Austenitic Stainless Steel[J]. 金属学报, 2007, 43(7): 713-718 .
[11] ;. STUDY OF COLD DEFORMATION BEHAVIORS OF A HIGH NITROGEN AUSTENITIC STAINLESS STEEL AND 316L STAINLESS STEEL[J]. 金属学报, 2007, 43(2): 171-176 .
[12] ;. CRYSTALLOGRAPHIC ANALYSIS OF THE FRACTURE FACETS IN LOW TEMPERATURE BRITTLE FRACTURE OF A HIGH NITROGEN BEARING AUSTENITIC STEEL[J]. 金属学报, 2007, 43(12): 1233-1238 .
No Suggested Reading articles found!