Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (8): 980-986    DOI: 10.11900/0412.1961.2015.00636
Orginal Article Current Issue | Archive | Adv Search |
RESEARCH ON THE CARBIDE PRECIPITATION AND CHROMIUM DEPLETION IN THE GRAIN BOUNDARY OF ALLOY 690 CONTAINING DIFFERENT CONTENTS OF NITROGEN
Yingche MA(),Shuo LI,Xianchao HAO,Xiangdong ZHA,Ming GAO,Kui LIU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Yingche MA,Shuo LI,Xianchao HAO,Xiangdong ZHA,Ming GAO,Kui LIU. RESEARCH ON THE CARBIDE PRECIPITATION AND CHROMIUM DEPLETION IN THE GRAIN BOUNDARY OF ALLOY 690 CONTAINING DIFFERENT CONTENTS OF NITROGEN. Acta Metall Sin, 2016, 52(8): 980-986.

Download:  HTML  PDF(938KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nickel-based alloy Inconel 690 (hereinafter called alloy 690) is currently replacing alloy 600 as steam generator tubes in pressurized water nuclear reactors, owing to its excellent resistance to intergranular stress corrosion cracking (IGSCC) and good mechanical properties. The carbide precipitation is a major microstructural characteristic during heat treatment of stainless steels and nickel-based alloys. The carbide precipitation and chromium depletion in the grain boundary of alloy 690 were investigated. The grain size and carbide of alloy 690 with 0.001% and 0.03% (mass fraction) nitrogen contents were observed and analyzed. The extent of chromium depletion in the vicinity of grain boundaries was quantitatively determined as a function of thermal treatment time. The solution treatment of the samples was at 1080 ℃ for 10 min, and then the samples were thermally treated at 715 ℃ for 1~25 h. The results show that the nitrogen addition decreases the intergranular carbide density and the average carbide length but increases its distance. The level of chromium in the depleted regions in alloy 690 with 0.03%N is higher than that with 0.001%N. This is attributed to the beneficial role of nitrogen addition against grain growth and sensitization.

Key words:  alloy 690      N      carbide precipitation      chromium depletion     
Received:  09 December 2015     
Fund: Supported by Chinese Academy of Scicences Innovation Foundation (No;CXJJ-14-M44)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00636     OR     https://www.ams.org.cn/EN/Y2016/V52/I8/980

Alloy Cr Fe C Al Ti N S Ni
10N 29.85 10.2 0.022 0.19 0.18 0.001 0.0005 Bal.
300N 29.76 10.0 0.020 0.18 0.19 0.030 0.0006 Bal.
Table 1  Chemical compositions of the alloy 690(mass fraction / %)
Fig.1  SEM images of carbides in hot-rolled 10N (a) and 300N (b) alloys where intergranular carbides are indicated with arrows
Fig.2  OM images of 10N (a) and 300N (b) alloys solution treated at 1080 ℃ for 10 min (SA)
Fig.3  TEM image of carbides in the 10N alloy after SA and thermally treated at 715 ℃ (TT) for 1 h (a), electron diffraction pattern (b) and corresponding index result (c) of γ matrix and M23C6
Fig.4  TEM images of carbides (M23C6) precipitated at grain boundaries of 10N alloy after SA and TT for 1 h (a), 5 h (b), 15 h (c) and 25 h (d)
Alloy Treatment Average density
μm-1
Average length
μm
Average distance between 10 particles / μm
10N SA+TT, 1 h 7.9 0.082 0.043
SA+TT, 5 h 7.6 0.102 0.023
SA+TT, 15 h 3.8 0.132 0.132
SA+TT, 25 h 2.7 0.174 0.196
300N SA+TT, 1 h 6.8 0.068 0.079
SA+TT, 5 h 6.1 0.090 0.074
SA+TT, 15 h 3.0 0.108 0.223
SA+TT, 25 h 2.4 0.152 0.265
Table 2  Quantitative analysis of precipitate characteristics
Fig.5  TEM images of carbides (M23C6) precipitated at grain boundaries of 300N alloy after SA and TT for 1 h (a), 5 h (b), 15 h (c) and 25 h (d)
Fig.6  Cr concentration curves of 10N and 300N alloys after SA and TT for 1 h (a), 5 h (b), 15 h (c) and 25 h (d)
[1] Was G S..Corrosion, 1988; 46: 319
[2] Briant C L, Toole C S O, Hall E L.Corrosion, 1986; 42: 15
[3] Was G S, Tischner H H, Latanision R M.Metall Trans, 1981; 12A: 1397
[4] Yu G P, Yao H C.Corrosion, 1990; 46: 391
[5] Kai J J, Tsai C H, Huang T A, Liu M N.Metall Trans, 1989; 20A:1077
[6] Simmons J W.Mater Sci Eng, 1996; A207: 159
[7] Mozhi T A, Betrabet H S, Jagannathan V, Wilde B E, Clark W A T.Scr Metall, 1986; 20: 723
[8] Mozhi T A, Clark W A T, Nishimoto K, Johson W B, MacDonald D D.Corrosion, 1985; 41: 555
[9] Speidel M O, Pedrazzoli R M.Mater Perform, 1992; 31(9): 59
[10] Fuchs G E, Hayden S Z.Scr Mater, 1991; 25: 1483
[11] Jiang R, Chen B, Hao X C, Ma Y C, Li S, Liu K.J Mater Sci Technol, 2012; 28: 446
[12] Thuvander M, Miller M K, Stiller K.Mater Sci Eng, 1999; A270: 38
[13] Thuvander M, Stiller K, Olsson E.Mater Sci Technol, 1999; 15: 237
[14] Li S, Chen B, Ma Y C, Liu K.Acta Metall Sin, 2011; 47: 816
[14] (李硕, 陈波, 马颖澈, 刘奎. 金属学报, 2011; 47: 816)
[15] Betrabet H S, Nishimoto K, Wilde B E, Clark W A T.Corrosion, 1987; 43: 77
[16] Rios P R..Scr Mater, 1998; 39: 1725
[17] Rios P R, Fonseca G S.Scr Mater, 2004; 50: 1373
[18] Su Z Y, Liu C M.Diffusion and Phase Transformation in Alloys. Shenyang: Northeastern University Press, 2002: 39
[18] (孙振岩, 刘春明. 合金中的扩散与相变. 沈阳: 东北大学出版社, 2002: 39)
[19] Zener C.J Appl Phys, 1949; 20: 950
[20] Sahlaoui H, Sidhom H, Philibert J.Acta Mater, 2002; 50: 1383
[21] Mayo W E.Mater Sci Eng, 1997; A232: 129
[22] Sarver J M, Crum J R, Mankins W L.Corrosion NACE, 1988; 44: 288
[23] Nagano H, Yamanaka K, Kobayashi K, Inoue M.Sumitomo Search, 1989; 40: 57
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[7] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[8] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[9] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[10] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[11] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[12] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[13] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[14] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[15] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
No Suggested Reading articles found!