Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (6): 747-754    DOI: 10.11900/0412.1961.2015.00522
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND WEAR RESISTANCE OF TiAlZrCr/(Ti, Al, Zr, Cr)N GRADIENT FILMS DEPOSITED BY MULTI-ARC ION PLATING
Shilu ZHAO1(),Zhen ZHANG2,Jun ZHANG1,Jianming WANG1,Zhenggui ZHANG1
1 School of Mechanical Engineering, Shenyang University, Shenyang 110044, China
2 BMW Brilliance Automotive Ltd., Shenyang 110143, China
Cite this article: 

Shilu ZHAO,Zhen ZHANG,Jun ZHANG,Jianming WANG,Zhenggui ZHANG. MICROSTRUCTURE AND WEAR RESISTANCE OF TiAlZrCr/(Ti, Al, Zr, Cr)N GRADIENT FILMS DEPOSITED BY MULTI-ARC ION PLATING. Acta Metall Sin, 2016, 52(6): 747-754.

Download:  HTML  PDF(871KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nowadays, the cutting tools are exposed to much more severe operating conditions, i.e. high cutting speed, high feed rate, aggressive mechanical and thermal loading. As a result, the existing hard films have frequently encountered wear-related failures. Such situation requires the new generation hard films concurrently displaying superior hardness, excellent adhesive strength and outstanding wear resistance. Previous studies have demonstrated some promising mechanical properties (hardness and adhesion strength) of TiAlZrCr/(Ti, Al, Zr, Cr)N quaternary gradient films as compared to those of the (Ti, Al)N binary and (Ti, Al, Zr)N or (Ti, Al, Cr)N trinary nitride films. However, the research on wear resistance of hard films under the conditions of high speed and dry friction has been seldom reported. In this work, using combined Ti-Al-Zr alloy and pure Cr targets, TiAlZrCr/(Ti, Al, Zr, Cr)N quaternary nitride films were deposited on high speed steel W18Cr4V substrates by multi-arc ion plating (MAIP) process at various bias voltages of -50, -100, -150 and -200 V. Surface morphology and crystalline struc ture of the gradient films were analyzed by SEM and XRD. Wear resistance of the films was evaluated by abrasion tester at both ambient (15 ℃) and elevated (500 ℃) temperatures. The worn surface morphology was then investigated by SEM. The results show that the deposited TiAlZrCr/(Ti, Al, Zr, Cr)N quaternary nitride films exhibited TiN-type (fcc-NaCl type) structure. The films have uniform and dense columnar morphologies. Furthermore, it was confirmed that the primary wear mechanism was adhesive wear (caused by plastic deformation) accompanied by a slight abrasion. The average values of friction coefficient varied at 0.25~0.30 at ambient temperature and 0.30~0.35 at elevated temperature, respectively. Finally, the best wear resistance was achieved when the bias voltage increased to -200 V.

Key words:  TiAlZrCr/(Ti      Al      Zr      Cr)N gradient film      multi-arc ion plating      bias voltage      microstructure      wear resistance     
Received:  08 October 2015     
Fund: Supported by Natural Science Foundation of Liaoning Province (No.2014020096), Shenyang Science and Technology Plan Project (No.F14-231-1-19) and Shenyang Yongyuan Guanghui Machinery Factory Transverse Project (No.201521010100051)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00522     OR     https://www.ams.org.cn/EN/Y2016/V52/I6/747

Stage Introduced
gas
Gas pressure
10-1 Pa
Bias voltage
V
Arc current of TiAlZr target / A Arc current of Cr target / A Substrate temperature / ℃ Deposition time / min
Ion bombardment Ar 1.5~2.0 --350 50 40 220~260 10
TiAlZrCr interlayer
deposition
Ar 1.5~2.0 --50, -100,
-150, -200
50 40 260~270 5
(Ti, Al, Zr, Cr)N gradient film deposition N2
1.5~2.0,
2.5~3.0
-50, -100,
-150, -200
50~70
40
260~270
30
Table 1  Operating parameters of TiAlZrCr/(Ti, Al, Zr, Cr)N gradient films
Fig.1  Cross-section SEM images of TiAlZrCr/(Ti, Al, Zr, Cr)N gradient films deposited at bias voltages of -50 V (a), -100 V (b), -150 V (c) and -200 V (d)
Fig.2  XRD spectra of TiAlZrCr/(Ti, Al, Zr, Cr)N gradient films on W18Cr4V substrate
Fig.3  Friction coefficient curves of TiAlZrCr/(Ti, Al, Zr, Cr)N gradient films deposited at bias voltages of -50 V (a), -100 V (b), -150 V (c) and -200 V (d) at room temperature
Fig.4  Friction coefficient curves of TiAlZrCr/(Ti, Al, Zr, Cr)N gradient films deposited at bias voltages of -50 V (a), -100 V (b), -150 V (c) and -200 V (d) at elevated temperature (500 ℃)
Fig.5  SEM images of worn morphologies of TiAlZrCr/(Ti, Al, Zr, Cr)N gradient films deposited at bias voltages of -50 V (a), -100 V (b), -150 V (c) and -200 V (d) at room temperature
Fig.6  SEM images of worn morphologies of TiAlZrCr/(Ti, Al, Zr, Cr)N gradient films deposited at bias voltages of -50 V (a), -100 V (b), -150 V (c) and -200 V (d) at elevated temperature (500 ℃)
[1] Mitsuo A, Uchida S, Nihira N, Iwaki M. Surf Coat Technol, 1998; 103-104: 98
[2] Zhang S H, Wang L, Wang Q M, Li M X.Surf Coat Technol, 2013; 214: 160
[3] Zhao S L, Zhang J, Liu C S.Acta Metall Sin (Engl Lett), 2010; 23: 473
[4] Chang Z K, Xiao J Q, Chen Y Q, Liu S C, Gong J, Sun C.Acta Metall Sin, 2012; 48: 547
[4] (常正凯, 肖金泉, 陈育秋, 刘山川, 宫骏, 孙超. 金属学报, 2012; 48: 547)
[5] Yousaf M I, Pelenovich V O, Yang B, Liu C S, Fu D J.Surf Coat Technol, 2015; 265: 117
[6] Du G Y, Ba D C, Tan Z, Sun W, Liu K, Han Q K.Surf Coat Technol, 2013; 229: 172
[7] Sheng Y L, Sheng C W, Jen S C, Jow L H.Surf Coat Technol, 2007; 202: 977
[8] Fox-rabinovich G S, Beake B D, Yamamoto K, Aguirre M H, Veldhuis S C, Dosbaeva G, Elfizy A, Biksa A, Shuster L S.Surf Coat Technol, 2010; 204: 3698
[9] Xu Y X, Chen L, Yang B, Peng Y B, Du Y, Feng J C, Pei F.Surf Coat Technol, 2013; 235: 506
[10] Yang S M, Chang Y Y, Lin D Y, Wang D Y, Wu W.Surf Coat Technol, 2008; 202: 2176
[11] Shi J, Pei Z L, Gong J, Sun C, Muders C M, Jiang X.Acta Metall Sin, 2012; 48: 1349
[11] (时婧, 裴志亮, 宫骏, 孙超, Muders C M, 姜辛. 金属学报, 2012; 48: 1349)
[12] Tetsuhide S, Hidetoshi K, Tomotaro W, Yoshikazu T, Hiroshi N, Kazuo M, Ming Y.Surf Coat Technol, 2014; 250: 44
[13] Xu J H, Ju H B, Yu L H.Acta Metall Sin, 2012; 48: 1132
[13] (许俊华, 鞠洪博, 喻利花. 金属学报, 2012; 48: 1132)
[14] Niu Y S, Wei J, Yu Z M.Surf Coat Technol, 2015; 275: 332
[15] Zhang M, Kim K H, Xu F F, Yang X X. Surf Coat Technol, 2013; 228(S1): S529
[16] Mori T, Noborisaka M, Watanabe T, Suzuki T.Surf Coat Technol, 2012; 213: 216
[17] Gao J, Li C R, Wang N, Du Z M.Int J Miner Metall Mater, 2008; 15: 420
[18] Wang B Y, Li Z X, Yan P, Du J H.Rare Met Mater Eng, 2008; 37: 1407
[18] (王宝云, 李争显, 严鹏, 杜继红. 稀有金属材料与工程, 2008; 37: 1407)
[19] Weber F R, Fontaine F, Scheib M, Bock W. Surf Coat Technol, 2004; 177-178: 227
[20] Chang Y Y, Lai H M.Surf Coat Technol, 2014; 259: 152
[21] Musil J, Daniel R.Surf Coat Technol, 2003; 166(2-3): 243
[22] Zhao S L, Zhang J, Chen W H, Wang S H.Chin J Vaccum Sci Technol, 2013; 33: 214
[22] (赵时璐, 张钧, 陈卫华, 王双红. 真空科学与技术学报, 2013; 33: 214)
[23] Zhao S L, Zhang J, Zhang Z, Wang S H, Zhang Z G.Int J Miner Metall Mater, 2014; 21: 77
[24] Zhao S L, Zhang J, Chen W H, Wang S H.Rare Met Mater Eng, 2014; 43: 341
[24] (赵时璐, 张钧, 陈卫华, 王双红. 稀有金属材料与工程, 2014; 43: 341)
[25] Xu J H, Wang X, Ma S L, Liu Y, Xu K W.Chin J Mater Res, 2008; 22: 201
[25] (徐建华, 王昕, 马胜利, 刘阳, 徐可为. 材料研究学报, 2008; 22: 201)
[26] Zhao S L.PhD Dissertation, Northeastern University, Shenyang, 2010
[26] (赵时璐. 东北大学博士学位论文, 沈阳, 2010)
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[6] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[8] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[9] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[10] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[11] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[12] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[13] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[14] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[15] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
No Suggested Reading articles found!