Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (12): 1503-1509    DOI: 10.11900/0412.1961.2016.00050
Orginal Article Current Issue | Archive | Adv Search |
RESERCH ON QUENCH SENSITIVITY AND MICROSTRUCTURE ANALYSIS OF 7050 ALUMINUM ALLOY
Shuzhou WU1,Youping YI1,Shiquan HUANG1(),Jun LI1,Chen LI2
1 State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
2 The First Aircraft Institute of AVIC, Xi'an 710089, China
Cite this article: 

Shuzhou WU,Youping YI,Shiquan HUANG,Jun LI,Chen LI. RESERCH ON QUENCH SENSITIVITY AND MICROSTRUCTURE ANALYSIS OF 7050 ALUMINUM ALLOY. Acta Metall Sin, 2016, 52(12): 1503-1509.

Download:  HTML  PDF(4956KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

7050 aluminum alloy is an important structural material widely used in aerospace industry with a high quench sensitivity. In this work, the time-temperature-transformation (TTT) curves of 7050 aluminum alloy were determined by interrupted quench method. The microstructure evolution and phase transformation kinetics during solid solution, isothermal quenching, ageing treatment were studied by TEM and JMA equation.The results show that the nose temperature of TTT curves is about 330 ℃, with the quench sensitivity range of 300~380 ℃. The quenching sensitivity of high temperature range of 400~450 ℃ is lower than that of low temperature range of 210~270 ℃. The laminar equilibrium η phases characterized with nucleus of Al3Zr particles and several needle-shaped S phases are the main precipitations of the supersaturated solid solution decomposes during isothermal holding process. With the increase of holding time, the volume fraction of precipitated phases rises quickly, which coarsen the grain boundary continuously and broaden precipitation free zone (PFZ). While holding far away from the nose temperature, the speed of precipitation slow down and the degree of continuity and coarsening of grain boundary decrease. The values of n in JMA equation vary from 0.50 to 0.65, indicating that the precipitations are mainly laminar precipitated phases and supplementarily needle-shaped phases.

Key words:  7050      aluminum      alloy,      TTT      curve,      quench      sensitivity,      phase      transformation      kinetics,      microstructure     
Received:  01 February 2016     
Fund: Supported by National Basic Research Program of China (No.2012CB619504), International Science and Technology Cooperation Program of China (No.2014DFA51250) and Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing (No.zzyjkt2014-02)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00050     OR     https://www.ams.org.cn/EN/Y2016/V52/I12/1503

Fig.1  Microstructure of 7050 aluminum alloy mold piece
Fig.2  Influence of holding time (t) on electric conductivity of water-quenched alloy at temperatures of 210~330 ℃ (a) and 360~450 ℃ (b)
Fig.3  Time-temperature-transformation (TTT) curves of 7050 aluminum alloy during isothermal holding process
Temperature / ℃ k n
250 0.012 0.632
270 0.021 0.617
300 0.028 0.635
315 0.036 0.617
330 0.056 0.536
360 0.041 0.534
380 0.025 0.551
400 0.018 0.533
420 0.010 0.567
Table 1  Coefficients of S curves for 7050 aluminum alloy by fitting
Fig.4  S curves of 7050 aluminum alloy at isothermal holding process
Fig.5  TEM images of quenched alloy after holding at 330 ℃ for 0 s (a, d), 10 s (b, e) and 300 s (c, f) (η—MgZn2, S—Al2CuMg, T—AlZnMgCu)
Fig.6  TEM images of two-stage aged alloy after holding 300 s at temperatures of 330 ℃ (a, c) and 380 ℃ (b, d) (PFZ—precipitation free zone)
[1] Wang Z T, Tian R Z.Aluminum Alloy and Processing Handbook. Changsha: Central South University of Technology Press, 1989: 34
[1] (王祝堂, 田荣璋. 铝合金及其加工手册. 长沙: 中南工业大学出版社, 1989: 34)
[2] Zhang X M, Deng Y L, Zhang Y.Acta Metall Sin, 2015; 51: 268
[2] (张新明, 邓运来, 张勇. 金属学报, 2015; 51: 268)
[3] Li C G, Wu S J, Dai S L.Trans Nonferrous Met Soc China, 2002; 12: 15
[3] (李成功, 巫世杰, 戴圣龙. 中国有色金属学报, 2002; 12: 15)
[4] Sampson D S, translated by Hong R X. Album of Deformation Aluminum Alloy in Modern Times. Beijing: Metallurgy Industry Press, 1987: 97
[4] (Sampson D S 著, 洪仁先译. 国外近代变形铝合金专集. 北京: 冶金工业出版社, 1987: 97)
[5] Liu Y Z, Li Z L, Gu C X.Acta Metall Sin, 2013; 49: 1598
[5] (刘允中, 李志龙, 顾才鑫. 金属学报, 2013; 49: 1598)
[6] Dumont D, Deschamps A, Brechet Y.Acta Mater, 2004; 52: 2529
[7] Deschamps A, Brechet Y.Scr Mater, 1998; 39: 1517
[8] Thomson D S, Subramanya B S, Levy S A.Metall Trans, 1971; 2: 1149
[9] Conserva M, Russo E D, Caloni O.Metall Trans, 1971; 2: 1227
[10] Gong H, Wu Y X, Liao K.J Mater Eng, 2010; (1): 42
[10] (龚海, 吴运新, 廖凯. 材料工程, 2010; (1): 42)
[11] Davydov V G, Ber L B, Ananiev V N.In: Fridlyander I N ed., Proc 5th Int Conf on Aluminum Alloys, Amsterdam: Kluwer Academic Publishers-Plenum Publishers, 1996: 859
[12] Alekseev A A, Ber L B.Light Alloys Technol, 1993; 5: 18
[13] Archambault P, Godard D.Scr Mater, 2000; 42: 675
[14] Li S L, Huang Z Q, Chen W P, Liu Z M, Qi W J.Trans Mater Heat Treat, 2013; 34(4): 57
[14] (李慎兰, 黄志其, 陈维平, 刘志铭, 戚文军. 材料热处理学报, 2013; 34(4): 57)
[15] Wang G, Yin Z M, Zhao K, Duan J Q, Liu B, Shang B C.Mater Sci Technol, 2011; 19(4): 84
[15] (王岗, 尹志民, 赵凯, 段佳琦, 刘博, 商宝川. 材料科学与工艺, 2011; 19(4): 84)
[16] Robinson J S, Cudd R L, Tanner D A.J Mater Process Technol, 2001; 119: 261
[17] Chen L, Yu Y N.Phase Transformations in Metals and Alloys. Beijing: Higher Education Press, 2011: 233
[17] (陈冷, 余永宁. 金属和合金中的相变. 北京: 高等教育出版社, 2011: 233)
[18] Staley J T.Mater Sci Technol, 1987; 3: 923
[19] Christian J W.The Theory of Transformations in Metals and Alloys. Oxford: Pergamon Press, 1975: 58
[20] Liu S D, Zhang X M, You J H, Huang Z B, Zhang C, Zhang X Y.Trans Nonferrous Met Soc China, 2006; 12: 2034
[20] (刘胜胆, 张新明, 游江海, 黄振宝, 张翀, 张小艳. 中国有色金属学报, 2006; 12: 2034)
[21] Li P Y, Xiong B Q, Zhang Y A, Li Z H, Zhu B H, Wang F, Liu H W.Trans Nonferrous Met Soc China, 2011; 21: 513
[21] (李培跃, 熊柏青, 张永安, 李志辉, 朱宝宏, 王锋, 刘红伟. 中国有色金属学报, 2011; 21: 513)
[22] Liu W J.PhD Dissertation, Central South University, Changsha, 2011
[22] (刘文军. 中南大学博士学位论文, 长沙, 2011)
[23] Chen H.Master Thesis, Central South University, Changsha, 201
[23] (陈慧. 中南大学硕士学位论文, 长沙, 2012)
[24] Dai X Y.PhD Dissertation, Central South University, Changsha, 2008
[24] (戴晓元. 中南大学博士学位论文, 长沙, 2008)
[25] Godard D, Archambault P, Aeby-Gautier E. Acta Mater, 2002; 50: 2319
[26] Tang J G, Chen H, Zhang X M, Liu S D, Liu W J, Ouyang H, Li H P.Trans Nonferrous Met Soc China, 2012; 22: 1255
[27] Tian F Q, Cui J Z.Trans Nonferrous Met Soc China, 2006; 16: 958
[27] (田福泉, 崔建忠. 中国有色金属学报, 2006; 16: 958)
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[8] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[9] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[10] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[11] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[12] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[13] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[14] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[15] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
No Suggested Reading articles found!