|
|
RESERCH ON QUENCH SENSITIVITY AND MICROSTRUCTURE ANALYSIS OF 7050 ALUMINUM ALLOY |
Shuzhou WU1,Youping YI1,Shiquan HUANG1( ),Jun LI1,Chen LI2 |
1 State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China 2 The First Aircraft Institute of AVIC, Xi'an 710089, China |
|
Cite this article:
Shuzhou WU,Youping YI,Shiquan HUANG,Jun LI,Chen LI. RESERCH ON QUENCH SENSITIVITY AND MICROSTRUCTURE ANALYSIS OF 7050 ALUMINUM ALLOY. Acta Metall Sin, 2016, 52(12): 1503-1509.
|
Abstract 7050 aluminum alloy is an important structural material widely used in aerospace industry with a high quench sensitivity. In this work, the time-temperature-transformation (TTT) curves of 7050 aluminum alloy were determined by interrupted quench method. The microstructure evolution and phase transformation kinetics during solid solution, isothermal quenching, ageing treatment were studied by TEM and JMA equation.The results show that the nose temperature of TTT curves is about 330 ℃, with the quench sensitivity range of 300~380 ℃. The quenching sensitivity of high temperature range of 400~450 ℃ is lower than that of low temperature range of 210~270 ℃. The laminar equilibrium η phases characterized with nucleus of Al3Zr particles and several needle-shaped S phases are the main precipitations of the supersaturated solid solution decomposes during isothermal holding process. With the increase of holding time, the volume fraction of precipitated phases rises quickly, which coarsen the grain boundary continuously and broaden precipitation free zone (PFZ). While holding far away from the nose temperature, the speed of precipitation slow down and the degree of continuity and coarsening of grain boundary decrease. The values of n in JMA equation vary from 0.50 to 0.65, indicating that the precipitations are mainly laminar precipitated phases and supplementarily needle-shaped phases.
|
Received: 01 February 2016
|
Fund: Supported by National Basic Research Program of China (No.2012CB619504), International Science and Technology Cooperation Program of China (No.2014DFA51250) and Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing (No.zzyjkt2014-02) |
[1] | Wang Z T, Tian R Z.Aluminum Alloy and Processing Handbook. Changsha: Central South University of Technology Press, 1989: 34 | [1] | (王祝堂, 田荣璋. 铝合金及其加工手册. 长沙: 中南工业大学出版社, 1989: 34) | [2] | Zhang X M, Deng Y L, Zhang Y.Acta Metall Sin, 2015; 51: 268 | [2] | (张新明, 邓运来, 张勇. 金属学报, 2015; 51: 268) | [3] | Li C G, Wu S J, Dai S L.Trans Nonferrous Met Soc China, 2002; 12: 15 | [3] | (李成功, 巫世杰, 戴圣龙. 中国有色金属学报, 2002; 12: 15) | [4] | Sampson D S, translated by Hong R X. Album of Deformation Aluminum Alloy in Modern Times. Beijing: Metallurgy Industry Press, 1987: 97 | [4] | (Sampson D S 著, 洪仁先译. 国外近代变形铝合金专集. 北京: 冶金工业出版社, 1987: 97) | [5] | Liu Y Z, Li Z L, Gu C X.Acta Metall Sin, 2013; 49: 1598 | [5] | (刘允中, 李志龙, 顾才鑫. 金属学报, 2013; 49: 1598) | [6] | Dumont D, Deschamps A, Brechet Y.Acta Mater, 2004; 52: 2529 | [7] | Deschamps A, Brechet Y.Scr Mater, 1998; 39: 1517 | [8] | Thomson D S, Subramanya B S, Levy S A.Metall Trans, 1971; 2: 1149 | [9] | Conserva M, Russo E D, Caloni O.Metall Trans, 1971; 2: 1227 | [10] | Gong H, Wu Y X, Liao K.J Mater Eng, 2010; (1): 42 | [10] | (龚海, 吴运新, 廖凯. 材料工程, 2010; (1): 42) | [11] | Davydov V G, Ber L B, Ananiev V N.In: Fridlyander I N ed., Proc 5th Int Conf on Aluminum Alloys, Amsterdam: Kluwer Academic Publishers-Plenum Publishers, 1996: 859 | [12] | Alekseev A A, Ber L B.Light Alloys Technol, 1993; 5: 18 | [13] | Archambault P, Godard D.Scr Mater, 2000; 42: 675 | [14] | Li S L, Huang Z Q, Chen W P, Liu Z M, Qi W J.Trans Mater Heat Treat, 2013; 34(4): 57 | [14] | (李慎兰, 黄志其, 陈维平, 刘志铭, 戚文军. 材料热处理学报, 2013; 34(4): 57) | [15] | Wang G, Yin Z M, Zhao K, Duan J Q, Liu B, Shang B C.Mater Sci Technol, 2011; 19(4): 84 | [15] | (王岗, 尹志民, 赵凯, 段佳琦, 刘博, 商宝川. 材料科学与工艺, 2011; 19(4): 84) | [16] | Robinson J S, Cudd R L, Tanner D A.J Mater Process Technol, 2001; 119: 261 | [17] | Chen L, Yu Y N.Phase Transformations in Metals and Alloys. Beijing: Higher Education Press, 2011: 233 | [17] | (陈冷, 余永宁. 金属和合金中的相变. 北京: 高等教育出版社, 2011: 233) | [18] | Staley J T.Mater Sci Technol, 1987; 3: 923 | [19] | Christian J W.The Theory of Transformations in Metals and Alloys. Oxford: Pergamon Press, 1975: 58 | [20] | Liu S D, Zhang X M, You J H, Huang Z B, Zhang C, Zhang X Y.Trans Nonferrous Met Soc China, 2006; 12: 2034 | [20] | (刘胜胆, 张新明, 游江海, 黄振宝, 张翀, 张小艳. 中国有色金属学报, 2006; 12: 2034) | [21] | Li P Y, Xiong B Q, Zhang Y A, Li Z H, Zhu B H, Wang F, Liu H W.Trans Nonferrous Met Soc China, 2011; 21: 513 | [21] | (李培跃, 熊柏青, 张永安, 李志辉, 朱宝宏, 王锋, 刘红伟. 中国有色金属学报, 2011; 21: 513) | [22] | Liu W J.PhD Dissertation, Central South University, Changsha, 2011 | [22] | (刘文军. 中南大学博士学位论文, 长沙, 2011) | [23] | Chen H.Master Thesis, Central South University, Changsha, 201 | [23] | (陈慧. 中南大学硕士学位论文, 长沙, 2012) | [24] | Dai X Y.PhD Dissertation, Central South University, Changsha, 2008 | [24] | (戴晓元. 中南大学博士学位论文, 长沙, 2008) | [25] | Godard D, Archambault P, Aeby-Gautier E. Acta Mater, 2002; 50: 2319 | [26] | Tang J G, Chen H, Zhang X M, Liu S D, Liu W J, Ouyang H, Li H P.Trans Nonferrous Met Soc China, 2012; 22: 1255 | [27] | Tian F Q, Cui J Z.Trans Nonferrous Met Soc China, 2006; 16: 958 | [27] | (田福泉, 崔建忠. 中国有色金属学报, 2006; 16: 958) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|