Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (9): 1063-1070    DOI: 10.11900/0412.1961.2013.00848
Current Issue | Archive | Adv Search |
HOT DEFORMATION BEHAVIOR OF BLADES STEEL 10Cr12Ni3Mo2VN FOR ULTRA- SUPERCRITICAL UNITS
LI Junru1, GONG Chen1, CHEN Lie2, ZUO Hui2, LIU Yazheng1()
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2 Xining Special Steel Co. Ltd., Xining 810005
Cite this article: 

LI Junru, GONG Chen, CHEN Lie, ZUO Hui, LIU Yazheng. HOT DEFORMATION BEHAVIOR OF BLADES STEEL 10Cr12Ni3Mo2VN FOR ULTRA- SUPERCRITICAL UNITS. Acta Metall Sin, 2014, 50(9): 1063-1070.

Download:  HTML  PDF(6872KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

10Cr12Ni3Mo2VN steel is mainly made by forging and usually used to make last stage blades of ultra-supercritical unit, demanding strict standards of microstructure property because of its hard service environment, so it is necessary to conduct deep research on its hot deformation behavior. The hot deformation behavior of 10Cr12Ni3Mo2VN steel was investigated through high temperature compression tests on the Gleeble-1500 thermal-mechanical simulator at 850~1200 ℃ and strain rate range of 0.01~10 s-1. The results show that dynamic recrystallization becomes more prone to happen and recrystallized grain size increases with increasing temperature and decreasing strain rate. Isometric crystal and mixed structure appear after compressed 60% at 1200 ℃ with high and low strain rate respectively. A new method of establishing the hot deformation hyperbolic sine constitutive equation by Levenberg-Marquardt algorithm is proposed. Parameters of the constitutive equations established by traditional linear fitting and Levenberg-Marquardt algorithm have a similar value, and both of the constitutive equations have a high prediction precision, so the method of establishing constitutive equation by Levenberg-Marquardt algorithm is credible. However, Levenberg-Marquardt algorithm can get all parameters at the same time with fewer and simpler steps compared to traditional linear fitting. In addition, the values of critical strain for dynamic recrystallization initiation are determined from the work hardening rate-strain curves and a model related to Zener-Hollomon parameter for predicting critical and peak strain under different deformation paraments is established.

Key words:  10Cr12Ni3Mo2VN steel      hot deformation      constitutive equation      critical strain     
ZTFLH:  TG142.73  
Fund: Supported by National High Technology Research and Development Program of China(No.2012AA03A502)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2013.00848     OR     https://www.ams.org.cn/EN/Y2014/V50/I9/1063

  
  
  
Fig.4  Microstructures of steel 10Cr12Ni3Mo2VN after compressed 30% (a), 40% (b), 50% (c) and 60% (d) at 1200 ℃ with strain rate 0.1 s-1
Fig.5  
Fig.6  Relationships between peak stress and strain rate,peak stress and deformation temperature T( α—material constant) (a) lnε? -ln[sinh(ασp)] (b) ln[sinh(ασp)]-1/T
Fig.7  Relationships between ln ε? +Q/(RT) and ln[sinh(ασp)] (Q—hot deformation activation energy, R21 —determination coefficient, R—gas constant)
Fig.8  Correlation between the experimental and predicted σp from the constitutive equation derived from classical (a) and Levenberg-Marquardt (b) algorithms
  
  
Fig.11  Relationship between lnεc, lnεp and lnZ (Z—Zener-Hollomon parameter)
[1] Xie X L, Yang G, Chen J C, Yang G X, Fan H. Heat Treat, 2009; 24(5): 35
(谢学林, 杨 钢, 陈敬超, 杨功显, 范 华. 热处理, 2009; 24(5): 35)
[2] Masuyama F. ISIJ Int, 2001; 41: 612
[3] McQueen H J. Mater Sci Eng, 2004; A387: 203
[4] Fernández A I, Uranga P, Lopez B, Rodriguez-Ibabe J M. Mater Sci Eng, 2003; A361: 367
[5] Quan G Z, Li G S, Chen T, Wang Y X, Zhang Y W, Zhou J. Mater Sci Eng, 2011; A528: 4643
[6] Chen M S, Lin Y C, Ma X S. Mater Sci Eng, 2012; A556: 260
[7] Cao J R, Liu Z D, Cheng S C, Yang G, Xie J X. Acta Metall Sin, 2007; 43: 35
(曹金荣, 刘正东, 程世长, 杨 钢, 谢建新. 金属学报, 2007; 43: 35)
[8] Wu L Z, Li X S, Chen J, Zhang H B, Cui Z S. J Iron Steel Res Int, 2010; 17(7): 51
[9] Tan Z L, Xiang S. Trans Mater Heat Treat, 2013; 34(5): 42
(谭智林, 向 嵩. 材料热处理学报, 2013; 34(5): 42)
[10] Wei J, Tang G B, Liu Z D. J Iron Steel Res, 2008; 20(3): 31
(魏 洁, 唐广波, 刘正东. 钢铁研究学报, 2008; 20(3): 31)
[11] Dehghan-Manshadi A, Barnett M R, Hodgson P D. Metall Mater Trans, 2008; 39A: 1359
[12] Song R B, Zhang Y K, Wen X L, Jia Y S. Acta Metall Sin, 2011; 47: 34
(宋仁伯, 张永坤, 文新理, 贾翼速. 金属学报, 2011; 47: 34)
[13] Wei H L, Liu G Q, Xiao X, Zhang M H. Acta Metall Sin, 2013; 49: 731
(魏海莲, 刘国权, 肖 翔, 张明赫. 金属学报, 2013; 49: 731)
[14] Chen L, Wang L M, Du X J, Liu X. Acta Metall Sin, 2010; 46: 52
(陈 雷, 王龙妹, 杜晓建, 刘 晓. 金属学报, 2010; 46: 52)
[15] Wang Z X, Liu X F, Xie J X. Acta Metall Sin, 2008; 44: 1378
(王智祥, 刘雪峰, 谢建新. 金属学报, 2008; 44: 1378)
[16] McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43
[17] Jia B, Peng Y. Acta Metall Sin, 2011; 47: 507
(贾 斌, 彭 艳. 金属学报, 2011; 47: 507)
[18] Cao Y, Di H S, Zhang J Q, Ma T J, Zhang J C. Acta Metall Sin, 2013; 49: 811
(曹 宇, 邸洪双, 张敬奇, 马天军, 张洁岑. 金属学报, 2013; 49: 811)
[19] Kim S I, Yoo Y C. Mater Sci Eng, 2001; A311: 108
[20] Jonas J J, Quelennec X, Jiang L, Martin É. Acta Mater, 2009; 57: 2748
[21] Dehghan-Manshadi A, Barnett M R, Hodgson P D. Mater Sci Eng, 2008; A485: 664
[22] Belyakov A, Miura H, Sakai T. Mater Sci Eng, 1998; A255: 139
[23] El Wahabi M, Cabrera J M, Prado J M. Mater Sci Eng, 2003; A343: 116
[24] Cho J R, Jeong H S, Cha D J, Bae W B, Lee J W. J Mater Process Technol, 2005; 160: 1
[25] Poliak E I, Jonas J J. Acta Mater, 1996; 44: 127
[26] Laasraoui A, Jonas J J. Metall Trans, 1991; 22A: 1545
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[3] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[4] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[5] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[6] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[7] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[8] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
[9] ZHAO Manman, QIN Sen, FENG Jie, DAI Yongjuan, GUO Dong. Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel[J]. 金属学报, 2020, 56(7): 960-968.
[10] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[11] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[12] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[13] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[14] Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. 金属学报, 2019, 55(1): 59-72.
[15] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
No Suggested Reading articles found!