|
|
PHASE FIELD CRYSTAL SIMULATION OF STRAIN EFFECTS ON DISLOCATION MOVEMENT OF PREMELTING GRAIN BOUNDRIES AT HIGH TEMPERATURE |
GAO Yingjun1,2( ), ZHOU Wenquan1, DENG Qianqian1, LUO Zhirong1, LIN Kui1, HUANG Chuanggao1,2 |
1 College of Physics Science and Engineering, Guangxi University, Nanning 530004 2 Guangxi Key Laboratory for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004 3 Institute of Physics Science and Engineering Technology, Yulin Normal University, Yulin 537000 |
|
Cite this article:
GAO Yingjun, ZHOU Wenquan, DENG Qianqian, LUO Zhirong, LIN Kui, HUANG Chuanggao. PHASE FIELD CRYSTAL SIMULATION OF STRAIN EFFECTS ON DISLOCATION MOVEMENT OF PREMELTING GRAIN BOUNDRIES AT HIGH TEMPERATURE. Acta Metall Sin, 2014, 50(7): 886-896.
|
Abstract The properties of modern materials, especially superplastic, nanocrystalline or composite materials, depend critically on the properties of internal interfaces such as grain boundaries (GBs) and interphase boundaries (IBs). All processes which can change the properties of GBs and IBs affect drastically the behaviour of polycrystalline metals and ceramics. In this work, the annihilation processes of low-angle symmetric tilt GBs and dislocations during plastic deformation in the representative system of these materials near but below the melting point and the temperature at liquid-solid coexistence line were simulated using the phase-field crystal model, respectively. The results show that local premelting occurs around lattice dislocations near the melting point but the dislocation structure in the premelting region does not change, while the region become significantly larger when the system reaches the melting temperature. After premelting, deformation to the system causes dislocations in the premelting GB to begin to glide then annihilate with opposite Burgers vectors via the movement, finally the GB and the premelting region disappear. The annihilation mechanisms of dislocations are similar to those for premelting conditions. The more the temperature is closer to the melting point, the more obvious the atomic lattice around the premelting region is softened leading to the atomic binding strength around the dislocations being lowered. Only at this moment, the lattice atoms enable to reduce the resistance of the dislocation motion and accelerate its velocity during deformation. At the temperature reaching to the liquid-solid coexisting region in the simulation, the original premelting regions are induced to develop into bigger ones by the external strain acting. During this process, it can be seen some interactions including the multiplication dislocation pairs, the rotation of dislocation pairs and their annihilation. Furthermore, the shape of the premelting region changes with the variation of the interaction of dislocations inside the region, it is observed that the premelting regions approach each other and consolidate together, then decompose and segregate from each other. Although the shape of the premelting region changes with the applied strain, these regions do not disappear at the end of the simulation, totally different those in lower premelting temperature.
|
Received: 16 December 2013
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.51161003 and 50661001), Guangxi Natural Science Foundation (No.2012GXNSFDA053001) and Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials (No.GXKFJ12-01) |
[1] |
Straumal B B, Zieba P, Gust W. Int J Inorg Mater, 2001; 3: 1113
|
[2] |
Straumal B, Kogtenkova O, Protasova S, Mazilkin A, Zieba P. Mater Sci Eng, 2008; A495: 126
|
[3] |
Luo J. Curr Opin Solid State Mater Sci, 2008; 12: 81
|
[4] |
Alsayed A M, Islam M F, Zhang J, Collings P J, Yodh A G. Science, 2005; 309: 1207
|
[5] |
Tallon J L. Nature, 1978; 276: 849
|
[6] |
Bartis F J. Nature, 1977; 268: 427
|
[7] |
Oxtoby D W. Nature, 1990; 347: 725
|
[8] |
Pusey P N. Science, 2005; 309: 1198
|
[9] |
Hsich T E, Ballaffi R W. Acta Metall, 1989; 37: 1637
|
[10] |
Lu K, Sheng H W, Jin Z H. Chin J Mater Res, 1997; 11: 658
|
|
(卢 柯, 生红卫, 金朝晖. 材料研究学报, 1997; 11: 658)
|
[11] |
Chaudron G, Lacombe P, Yannacguis N. C R Acad Sci, 1948; 226: 1372
|
[12] |
Balluffi R W, Maurer R. Scr Metall, 1988; 22: 709
|
[13] |
Hsieh T E, Balluffi R W. Acta Metall, 1989; 37: 1637
|
[14] |
Divinski S, Lohman M, Herzig C, Straumal B, Baretzky B, Gust W. Phys Rev, 2005; 71B: 104104
|
[15] |
Straumal B B, Noskovich Q I, Semenov V N. Acta Metall Mater, 1992; 40: 795
|
[16] |
Wang N, Mokadam S, Rappaz M, Kurz W. Acta Mater, 2004; 52: 3173
|
[17] |
Inoko F, Okada T, Maraga T, Nakano Y, Yoshikawa T. Interf Sci, 1997; 4: 263
|
[18] |
Inoko F, Hama T, Tagami M, Yoshikawa T. Ultramicroscopy, 1991; 39: 118
|
[19] |
Zhang L, Wang S Q, Ye H Q. Acta Phys Sin, 2004, 53: 2497
|
|
(张 林, 王绍青, 叶恒强. 物理学报, 2004; 53: 2497)
|
[20] |
Willians P L, Mishin Y. Acta Mater, 2009; 57: 3786
|
[21] |
Frolov T, Mishin Y. Phys Rev, 2009; 79B: 174110
|
[22] |
Keblinski P, Phillpot S R, Wolf D, Gleiter H. Acta Mater, 1997; 45: 987
|
[23] |
Besold G, Mouritsen O G. Phys Rev, 1994; 50B: 6573
|
[24] |
Qi Y, Krajewski P E. Acta Mater, 2007; 55: 1555
|
[25] |
Wang H L, Wang X X, Liang H Y. Acta Phys Sin, 2005; 54: 4836
|
|
(王海龙, 王秀喜, 梁海弋. 物理学报, 2005; 54: 4836)
|
[26] |
Lobkovsky A E, Warran J A. Physica, 2002; 164D: 202
|
[27] |
Mishin Y, Boetlinger W J, Warren J A, McFadden G B. Acta Mater, 2009; 57: 3771
|
[28] |
Elder K R, Katakowski M, Haataja M, Grant M. Phys Rev Lett, 2002; 88: 245701
|
[29] |
Elder K R, Grant M. Phys Rev, 2004; 70E: 051605
|
[30] |
Yu Y M, Backofen R, Voigt A. J Cryst Growth, 2011; 318: 18
|
[31] |
Elder K R, Rossi G, Kanerva P, Sanches F, Ying S C, Granato E, Achim C V, Ala-Nissila T. Phys Rev Lett, 2012; 108: 226102
|
[32] |
Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K. Acta Phys Sin, 2013; 62: 050507
|
|
(高英俊, 罗志荣, 黄创高, 卢强华, 林 葵. 物理学报, 2013; 62: 050507)
|
[33] |
Greenwood M, Rottler J, Provatas N. Phys Rev, 2011; 83E: 031601
|
[34] |
Mkhonta S K, Elder K R, Huang Z F. Phys Rev Lett, 2013; 111: 035501
|
[35] |
Gao Y J, Luo Z R, Huang L L, Lin K. Chin J Nonferrous Met, 2013; 23: 1892
|
|
(高英俊, 罗志荣, 黄礼琳, 林 葵. 中国有色金属学报, 2013; 23:1892)
|
[36] |
Yang T, Chen Z, Dong W P. Acta Metall Sin, 2011; 47: 1301
|
|
(杨 涛, 陈 铮, 董卫平. 金属学报, 2011; 47: 1301)
|
[37] |
Gao Y J, Lu C J, Huang L L, Luo Z R, Huang C G. Acta Metall Sin, 2014; 50: 110
|
|
(高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高. 金属学报, 2014; 50: 110)
|
[38] |
Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y. Chin J Comput Phys, 2013; 30: 577
|
|
(高英俊, 王江帆, 罗志荣, 卢强华, 刘 瑶.计算物理, 2013; 30: 577)
|
[39] |
Mellenthin J, Karma A, Phapp M. Phys Rev, 2008; 78B: 184110
|
[40] |
Hirouchi T, Takaki T, Tomita Y. Comput Mater Sci, 2009; 44: 1192
|
[41] |
Hirouchi T, Takaki T, Tomita Y. Int J Mech Sci, 2010; 52: 309
|
[42] |
Adland A, Karma A, Spatschek R, Buta D, Asta M. Phys Rev, 2013; 87B: 024110
|
[43] |
Olmsted D L, Buta D, Adland A, Foils S M, Asta M, Karma A. Phys Rev Lett, 2011; 106: 046101
|
[44] |
Spatschek R, Adland A, Karma A. Phys Rev, 2013; 87B: 024109
|
[45] |
Berry J, Elder K R, Grant M. Phys Rev, 2008; 77B: 224114
|
[46] |
Spatschek R, Kouman A. Phys Rev, 2010; 81B: 214201
|
[47] |
Lu Y L, Mu H, Hou H X, Chen Z. Acta Metall Sin, 2013; 49: 358
|
|
(卢艳丽, 牧 虹, 侯华欣, 陈 铮. 金属学报, 2013; 49: 358)
|
[48] |
Cheng M, Warren J A. J Comput Phys, 2008; 227: 6241
|
[49] |
Gao Y J, Luo Z R, Huang L L, Hu X Y. Acta Metall Sin, 2012; 48:1215
|
|
(高英俊, 罗志荣, 黄礼琳, 胡项英. 金属学报, 2012; 48: 1215)
|
[50] |
Hirth J P, Pond R C, Lothe J. Acta Mater, 2006; 54: 4237
|
[51] |
Long J, Wang Z Y, Zhao Y L, Long Q H, Yang T, Chen Z. Acta Phys Sin, 2013; 62: 218101
|
|
(龙 建, 王诏玉, 赵宇龙, 龙清华, 杨 涛, 陈 铮. 物理学报, 2013; 62: 218101)
|
[52] |
Hirth J P, Lothe J. Theory of Dislocation. New York: McGraw-Hill, 1968: 250
|
[53] |
Ni S, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Scr Mater, 2011; 64: 327
|
[54] |
Wang Y B, Ho J C, Cao Y, Liao X Z, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Zhu Y T. Appl Phys Lett, 2009; 94: 091911
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|