Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (7): 886-896    DOI: 10.3724/SP.J.1037.2013.00816
Current Issue | Archive | Adv Search |
PHASE FIELD CRYSTAL SIMULATION OF STRAIN EFFECTS ON DISLOCATION MOVEMENT OF PREMELTING GRAIN BOUNDRIES AT HIGH TEMPERATURE
GAO Yingjun1,2(), ZHOU Wenquan1, DENG Qianqian1, LUO Zhirong1, LIN Kui1, HUANG Chuanggao1,2
1 College of Physics Science and Engineering, Guangxi University, Nanning 530004
2 Guangxi Key Laboratory for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004
3 Institute of Physics Science and Engineering Technology, Yulin Normal University, Yulin 537000
Cite this article: 

GAO Yingjun, ZHOU Wenquan, DENG Qianqian, LUO Zhirong, LIN Kui, HUANG Chuanggao. PHASE FIELD CRYSTAL SIMULATION OF STRAIN EFFECTS ON DISLOCATION MOVEMENT OF PREMELTING GRAIN BOUNDRIES AT HIGH TEMPERATURE. Acta Metall Sin, 2014, 50(7): 886-896.

Download:  HTML  PDF(16527KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The properties of modern materials, especially superplastic, nanocrystalline or composite materials, depend critically on the properties of internal interfaces such as grain boundaries (GBs) and interphase boundaries (IBs). All processes which can change the properties of GBs and IBs affect drastically the behaviour of polycrystalline metals and ceramics. In this work, the annihilation processes of low-angle symmetric tilt GBs and dislocations during plastic deformation in the representative system of these materials near but below the melting point and the temperature at liquid-solid coexistence line were simulated using the phase-field crystal model, respectively. The results show that local premelting occurs around lattice dislocations near the melting point but the dislocation structure in the premelting region does not change, while the region become significantly larger when the system reaches the melting temperature. After premelting, deformation to the system causes dislocations in the premelting GB to begin to glide then annihilate with opposite Burgers vectors via the movement, finally the GB and the premelting region disappear. The annihilation mechanisms of dislocations are similar to those for premelting conditions. The more the temperature is closer to the melting point, the more obvious the atomic lattice around the premelting region is softened leading to the atomic binding strength around the dislocations being lowered. Only at this moment, the lattice atoms enable to reduce the resistance of the dislocation motion and accelerate its velocity during deformation. At the temperature reaching to the liquid-solid coexisting region in the simulation, the original premelting regions are induced to develop into bigger ones by the external strain acting. During this process, it can be seen some interactions including the multiplication dislocation pairs, the rotation of dislocation pairs and their annihilation. Furthermore, the shape of the premelting region changes with the variation of the interaction of dislocations inside the region, it is observed that the premelting regions approach each other and consolidate together, then decompose and segregate from each other. Although the shape of the premelting region changes with the applied strain, these regions do not disappear at the end of the simulation, totally different those in lower premelting temperature.

Key words:  phase-field crystal model      strain      grain boundary premelting      dislocation      high temperature     
Received:  16 December 2013     
ZTFLH:  TG111.2  
Fund: Supported by National Natural Science Foundation of China (Nos.51161003 and 50661001), Guangxi Natural Science Foundation (No.2012GXNSFDA053001) and Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials (No.GXKFJ12-01)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00816     OR     https://www.ams.org.cn/EN/Y2014/V50/I7/886

Fig. 1  Two-dimensional phase diagram[29,36] obtained by using one-mode approximation (L, T and S represent liquid phase, triangular phase, strip phase, respectively; φeqL and φeqS represent the atomic density located at the boundaries of solid-liquid coexistent region, respectively. r is the parameter of temperature, φ0 is the average atomic density )

(a) two-dimensional phase diagram of phase-field crystal (PFC) (b) magnified image of the box in Fig.1a

Sample First stage at low temperature Second stage at high temperature
r φ0 r φ0
A -0.3 -0.180 -0.1 -0.180
B -0.3 -0.195 -0.1 -0.195
C -0.3 -0.199 -0.1 -0.199
Table 1  Parameters for sample preparation
Fig.2  Snapshots of low-angle grain boundaries for three samples (The black regions are the premelting region in Figs.2a~c, where the center is the core of the dislocation)

(a) sample A, at high temperature near melting point

(b) sample B, at high temperature close to melting point

(c) sample C, at high temperature in coexistent region of solid-liquid

(d) dislocation array model in grain boundaries for samples A, B and C

Fig.3  Atomic density distributions across the dislocation premelting region in the range of 512Dx×53Dy (Dx and Dy represent a grid size unit in x and y, respectively) for sample A (a), sample B (b) and sample C (c)
Fig.4  Simulations of annihilation process of grain boundaries (GBs) in sample A (a1~a5) and sample B (b1~b5) at different strains (ε) (The long arrow indicates that the dislocations movement and the arrow direction points to its moving direction)
Fig.5  Strain-energy curves of GB annihilation at different temperatures for sample A (a), sample B (b) and sample C (c)
Fig.6  Fig.6 Simulations of process evolution of dislocation of GB in sample C at different strains (ε) and time steps (t)

(a) ε=0.033, t=5500 (b) ε=0.045, t=7500 (c) ε=0.0492, t=8200 (d) ε=0.0504, t=8400 (e) ε=0.0510, t=8500

(f) ε=0.0540, t=9000 (g) ε=0.0570, t=9500 (h) ε=0.0600, t=10000 (i) ε=0.0636, t=10600 (j) ε=0.0642, t=10700

(k) ε=0.0648, t=10800 (l) ε=0.0660, t=11000 (m) ε=0.0690, t=11500 (n) ε=0.0750, t=12500 (o) ε=0.0800, t=13300

[1] Straumal B B, Zieba P, Gust W. Int J Inorg Mater, 2001; 3: 1113
[2] Straumal B, Kogtenkova O, Protasova S, Mazilkin A, Zieba P. Mater Sci Eng, 2008; A495: 126
[3] Luo J. Curr Opin Solid State Mater Sci, 2008; 12: 81
[4] Alsayed A M, Islam M F, Zhang J, Collings P J, Yodh A G. Science, 2005; 309: 1207
[5] Tallon J L. Nature, 1978; 276: 849
[6] Bartis F J. Nature, 1977; 268: 427
[7] Oxtoby D W. Nature, 1990; 347: 725
[8] Pusey P N. Science, 2005; 309: 1198
[9] Hsich T E, Ballaffi R W. Acta Metall, 1989; 37: 1637
[10] Lu K, Sheng H W, Jin Z H. Chin J Mater Res, 1997; 11: 658
(卢 柯, 生红卫, 金朝晖. 材料研究学报, 1997; 11: 658)
[11] Chaudron G, Lacombe P, Yannacguis N. C R Acad Sci, 1948; 226: 1372
[12] Balluffi R W, Maurer R. Scr Metall, 1988; 22: 709
[13] Hsieh T E, Balluffi R W. Acta Metall, 1989; 37: 1637
[14] Divinski S, Lohman M, Herzig C, Straumal B, Baretzky B, Gust W. Phys Rev, 2005; 71B: 104104
[15] Straumal B B, Noskovich Q I, Semenov V N. Acta Metall Mater, 1992; 40: 795
[16] Wang N, Mokadam S, Rappaz M, Kurz W. Acta Mater, 2004; 52: 3173
[17] Inoko F, Okada T, Maraga T, Nakano Y, Yoshikawa T. Interf Sci, 1997; 4: 263
[18] Inoko F, Hama T, Tagami M, Yoshikawa T. Ultramicroscopy, 1991; 39: 118
[19] Zhang L, Wang S Q, Ye H Q. Acta Phys Sin, 2004, 53: 2497
(张 林, 王绍青, 叶恒强. 物理学报, 2004; 53: 2497)
[20] Willians P L, Mishin Y. Acta Mater, 2009; 57: 3786
[21] Frolov T, Mishin Y. Phys Rev, 2009; 79B: 174110
[22] Keblinski P, Phillpot S R, Wolf D, Gleiter H. Acta Mater, 1997; 45: 987
[23] Besold G, Mouritsen O G. Phys Rev, 1994; 50B: 6573
[24] Qi Y, Krajewski P E. Acta Mater, 2007; 55: 1555
[25] Wang H L, Wang X X, Liang H Y. Acta Phys Sin, 2005; 54: 4836
(王海龙, 王秀喜, 梁海弋. 物理学报, 2005; 54: 4836)
[26] Lobkovsky A E, Warran J A. Physica, 2002; 164D: 202
[27] Mishin Y, Boetlinger W J, Warren J A, McFadden G B. Acta Mater, 2009; 57: 3771
[28] Elder K R, Katakowski M, Haataja M, Grant M. Phys Rev Lett, 2002; 88: 245701
[29] Elder K R, Grant M. Phys Rev, 2004; 70E: 051605
[30] Yu Y M, Backofen R, Voigt A. J Cryst Growth, 2011; 318: 18
[31] Elder K R, Rossi G, Kanerva P, Sanches F, Ying S C, Granato E, Achim C V, Ala-Nissila T. Phys Rev Lett, 2012; 108: 226102
[32] Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K. Acta Phys Sin, 2013; 62: 050507
(高英俊, 罗志荣, 黄创高, 卢强华, 林 葵. 物理学报, 2013; 62: 050507)
[33] Greenwood M, Rottler J, Provatas N. Phys Rev, 2011; 83E: 031601
[34] Mkhonta S K, Elder K R, Huang Z F. Phys Rev Lett, 2013; 111: 035501
[35] Gao Y J, Luo Z R, Huang L L, Lin K. Chin J Nonferrous Met, 2013; 23: 1892
(高英俊, 罗志荣, 黄礼琳, 林 葵. 中国有色金属学报, 2013; 23:1892)
[36] Yang T, Chen Z, Dong W P. Acta Metall Sin, 2011; 47: 1301
(杨 涛, 陈 铮, 董卫平. 金属学报, 2011; 47: 1301)
[37] Gao Y J, Lu C J, Huang L L, Luo Z R, Huang C G. Acta Metall Sin, 2014; 50: 110
(高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高. 金属学报, 2014; 50: 110)
[38] Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y. Chin J Comput Phys, 2013; 30: 577
(高英俊, 王江帆, 罗志荣, 卢强华, 刘 瑶.计算物理, 2013; 30: 577)
[39] Mellenthin J, Karma A, Phapp M. Phys Rev, 2008; 78B: 184110
[40] Hirouchi T, Takaki T, Tomita Y. Comput Mater Sci, 2009; 44: 1192
[41] Hirouchi T, Takaki T, Tomita Y. Int J Mech Sci, 2010; 52: 309
[42] Adland A, Karma A, Spatschek R, Buta D, Asta M. Phys Rev, 2013; 87B: 024110
[43] Olmsted D L, Buta D, Adland A, Foils S M, Asta M, Karma A. Phys Rev Lett, 2011; 106: 046101
[44] Spatschek R, Adland A, Karma A. Phys Rev, 2013; 87B: 024109
[45] Berry J, Elder K R, Grant M. Phys Rev, 2008; 77B: 224114
[46] Spatschek R, Kouman A. Phys Rev, 2010; 81B: 214201
[47] Lu Y L, Mu H, Hou H X, Chen Z. Acta Metall Sin, 2013; 49: 358
(卢艳丽, 牧 虹, 侯华欣, 陈 铮. 金属学报, 2013; 49: 358)
[48] Cheng M, Warren J A. J Comput Phys, 2008; 227: 6241
[49] Gao Y J, Luo Z R, Huang L L, Hu X Y. Acta Metall Sin, 2012; 48:1215
(高英俊, 罗志荣, 黄礼琳, 胡项英. 金属学报, 2012; 48: 1215)
[50] Hirth J P, Pond R C, Lothe J. Acta Mater, 2006; 54: 4237
[51] Long J, Wang Z Y, Zhao Y L, Long Q H, Yang T, Chen Z. Acta Phys Sin, 2013; 62: 218101
(龙 建, 王诏玉, 赵宇龙, 龙清华, 杨 涛, 陈 铮. 物理学报, 2013; 62: 218101)
[52] Hirth J P, Lothe J. Theory of Dislocation. New York: McGraw-Hill, 1968: 250
[53] Ni S, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Scr Mater, 2011; 64: 327
[54] Wang Y B, Ho J C, Cao Y, Liao X Z, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Zhu Y T. Appl Phys Lett, 2009; 94: 091911
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[3] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[4] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[7] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[8] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[9] XIE Leipeng, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Effects of Processing on Microstructures and Properties of FGH4097 Superalloy[J]. 金属学报, 2022, 58(8): 992-1002.
[10] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[11] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[12] REN Shihao, LIU Yongli, MENG Fanshun, QI Yang. Strain-Engineered Semiconductor to Semimetallic Transition and Its Mechanism in Bi(111) Film[J]. 金属学报, 2022, 58(7): 911-920.
[13] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[14] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[15] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
No Suggested Reading articles found!