Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (12): 1521-1531    DOI: 10.3724/SP.J.1037.2013.00214
Current Issue | Archive | Adv Search |
SIMULATION AND EXPERIMENTAL STUDIES ON GRAIN SELECTION BEHAVIOR OF SINGLE  CRYSTAL SUPERALLOY :II. Spiral Part
ZHANG Hang1), XU Qingyan1), SUN Changbo2), QI Xiang1),TANG Ning1), LIU Baicheng 1)
1) Key Laboratory for Advanced Materials Processing Technology, Ministry of Education,School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2) Shenyang Liming Aero—Engine Group Corporation Ltd., Shenyang 110043
Cite this article: 

ZHANG Hang, XU Qingyan, SUN Changbo, QI Xiang,TANG Ning, LIU Baicheng. SIMULATION AND EXPERIMENTAL STUDIES ON GRAIN SELECTION BEHAVIOR OF SINGLE  CRYSTAL SUPERALLOY :II. Spiral Part. Acta Metall Sin, 2013, 49(12): 1521-1531.

Download:  PDF(4316KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The spiral selector is the key part for producing single crystal (SX) blades and ensures the integrity of crystal, which mainly includes starter block and spiral part. In this work, the influence of spiral part on the grain selection process was studied. Both of the metallography results and EBSD results proved that the prior location and the special orientation of the second dendrite arms were important for thegrains competitive growth during the directional solidification process. Based on the experimental results, two geometrical restrict mechanisms of grain selection were proposed. They were the competitive stimulating effect on the second dendrite arms in horizontal direction, which was resulted from the spiral arc shape, and the growing blocking effect on the primary dendrites in vertical direction, which was resulted from the take—off angle of the spiral part. These models could successfully explain the grain selecting effects of the spiral part. The modified cellular automaton  (MCA) technology was used to simulate the grains' competitive growth in spiral part. The changes of grains structure and orientation as the grain growing on were studied. The simulated and experimental results were compared and agreed well. Based on the simulated and experimental results, Influences of structural parameters on the grain selection behavior were proposed. The criteria for designing spiral part were also presented.

Key words:  numerical simulation      grain selection behavior      grain orientation      EBSD     
Received:  25 April 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00214     OR     https://www.ams.org.cn/EN/Y2013/V49/I12/1521

[1] Goulette M J, Spilling P D, Arthey R P. In: Kortovich C S, Bricknell R H,eds.,  Superalloys 1984, Warrendale, PA: TMS, 1984: 167

[2] Kurz W, Fisher D J, translated by Mao X M, Bao G Q.  Fundamentals of Solidification. Xi'an: Northwestern Polytechnical University Press, 1987: 20
(Kurz W, Fisher D J著, 毛协民, 包冠乾 译. 凝固原理. 西安: 西北工业大学出版社, 1987: 20)
[3] Glicksman M E.  Principles of Solidification an Introduction to Modern Casting and Crystal Growth Concepts. New York: Springer Science Business Media, 2011: 305
[4] Kurz W, Fisher D J.  Acta Mater, 1981; 29: 11
[5] Kurz W, Giovanola B, Trivedi R.  Acta Metall, 1986; 34: 823
[6] Oldfield W.  Mater Sci Eng, 1973; 11: 211
[7] Reed R C.  The Superalloys Fundamentals and Applications. Cambridge, UK:Cambridge University Press, 2006: 121
[8] Shi C X, Zhong Z Y.  Acta Metall Sin, 2010; 46: 1281
(师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)
[9] Gandin C A, Rappaz M, Tintillier R.  Metall Mater Trans, 1994; 25A: 629
[10] Gandin C A, Rappaz M.  Acta Mater, 1997; 45: 2187
[11] Gandin C A, Rappaz M.  Acta Metall Mater, 1994; 42: 2233
[12] Gandin C A, Desbiolles J L, Rappaz M, Thevoz P.  Metall Mater Trans, 1999; 30A: 3153
[13] Rappaz M, Gandin C A.  Acta Metall Mater, 1993; 41: 345
[14] Tang N, Xu Q Y, Liu B C.  Spec Cast Nonferrous Alloys, 2011; 31: 1028
(唐宁, 许庆彦, 柳百成. 特种铸造及有色合金, 2011; 31: 1028)
[15] Pan D, Xu Q Y, Liu B C.  Acta Metall Sin, 2010; 46: 294
(潘冬, 许庆彦, 柳百成. 金属学报, 2010; 46: 294)
[16] Yu J, Xu Q Y, Cui K, Liu B C.  Acta Metall Sin, 2007; 43: 731
(于靖, 许庆彦, 崔锴, 柳百成. 金属学报, 2007; 43: 731)
[17] Guo Y G, Li S M, Liu L, Fu H Z.  Acta Metall Sin, 2008; 44: 365
(郭勇冠, 李双明, 刘林, 傅恒志. 金属学报, 2008; 44: 365)
[18] Shan F W, Huang W D, Lin X, Wei L.  Acta Metall Sin, 2008; 44: 1042
(单博炜, 黄卫东, 林鑫, 魏雷. 金属学报, 2008; 44: 1042)
[19] Liu B C.  China Mechan Eng, 2000; 11: 76
(柳百成. 中国机械工程, 2000; 11: 76)
[20] Zhang H, Xu Q Y, Tang N, Pan D, Liu B C.  Sci China  (Engl Lett), 2011; 54E: 3191
[21] Carter P, Cox D C, Gandin C A, Reed R C.  Mater Sci Eng, 2000; A280: 233
[22] Esaka H, Shinozuka K, Tamura M.  Mater Sci Eng, 2005; A413: 151
[23] Epishin A I, Nolze G.  Cryst Rep, 2006; 51: 710
[24] Seo S M, Kim I S, Lee J H, Jo C Y, Miyahara H, Ogi K.  Met Mater Int, 2009; 15: 391
[25] Pan D.  PhD Dissertation, Tsinghua University, Beijing, 2010
(潘冬. 清华大学博士学位论文, 北京, 2010)
[26] Pan D, Xu Q Y, Liu B C, Li J R, Yuan H L, Jin H P.  JOM, 2010; 62(5): 30
[27] Dai H J, D'Souza N, Dong H B.  Metall Mater Trans, 2011; 42A: 3430
[28] Dai H J, Dong H B, D'Souza N.  Metall Mater Trans, 2011; 42A: 3439
[29] Dai H J, Gebelin J, Newell M, Reed R C, D'Souza N, Brown P D, Dong H B.In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S R, eds.,  Superalloy 2008, Warrendale, PA: TMS, 2008: 367
[30] Jiang L, Li S, Han Y.  Procedia Eng, 2012; 27: 1135
[31] Meng X, Li J, Jin T, Sun X, Sun C, Hu Z.  J Mater Sci Technol, 2011; 27: 118
[32] Meng X B, Lu Q, Zhang X L, Li J G, Chen Z Q, Wang Y H, Zhou Y Z, Jin T,Sun X F, Hu Z Q.  Acta Mater, 2012; 60: 3965
[33] Gao S F, Liu L, Wang N, Zhao X B, Zhang J, Fu H Z.  Acta Metall Sin, 2011; 47: 1251
(高斯峰, 刘林, 王柠, 赵新宝, 张军, 傅恒志. 金属学报, 2011; 47: 1251)
[34] Liang Z J.  PhD Dissertation, Tsinghua University, Beijing, 2003
(梁作俭. 清华大学博士学位论文, 北京, 2003)
[35] Editorial Committee.  Practical Handbook of Engineering Materials.
2nd Ed., Beijing: China Standards Press, 2002: 771

(丛书编委会. 工程材料实用手册. 第2版, 北京:中国标准出版社, 2002: 771)

[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[7] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[8] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[9] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[10] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[11] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[12] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[13] WU Xiang,ZUO Xiurong,ZHAO Weiwei,WANG Zhongyang. Mechanism of TiN Fracture During the Tensile Process of NM500 Wear-Resistant Steel[J]. 金属学报, 2020, 56(2): 129-136.
[14] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[15] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
No Suggested Reading articles found!