Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (5): 541-546    DOI: 10.3724/SP.J.1037.2012.00037
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF SEGREGATION ON LIQUID DENSITY IN THE MUSHY ZONE OF DZ483 Ni-BASED SUPERALLOY
FENG Shaobo, ZHANG Nannan, LUO Xinghong
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

FENG Shaobo, ZHANG Nannan, LUO Xinghong. INFLUENCE OF SEGREGATION ON LIQUID DENSITY IN THE MUSHY ZONE OF DZ483 Ni-BASED SUPERALLOY. Acta Metall Sin, 2012, 48(5): 541-546.

Download:  PDF(2246KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Ni-based superalloys have been widely applied in advanced aeroengine as gas turbine blades and vanes. The freckles in superalloys formed during directional solidification have deleterious influence on the properties of the alloys. The generation of freckles is associated with the local liquid density gradient in the mushy zone, which is obviously influenced by microsegregation of alloy elements. However, the individual contributions of the various elements to the total density variation are still not well known. Therefore, the effect of microsegregation on the liquid density variation in DZ483 Ni-based superalloy was investigated by isothermal solidification together with liquid quench method. Solidification microstructures were observed by optical microscope and SEM, and the compositions of the solids and the residual liquid were determined by EDS. Based on the compositions of residual liquids, the densities of liquids at different temperatures were calculated. The results show that the onset solidification temperature of DZ483 alloy is a little bit below 1335℃, and MC, which is enriched with Ta and Ti, formed at about 1325℃. The segregation coefficients of different elements show that W and Co are negative segregation elements, Ta and Ti positive segregation elements, while Al and Cr show little segregation. The density of the residual liquid generally decreases as the decrease of temperature, with the exception that it increases somewhat from 1325 to 1315℃. Calculation results show that temperature has insignificant influence on liquid density, and variation of density is mainly due to microsegregation. Segregations of Mo and Ta lead to the increase of density, but segregations of Ti and W present opposite effect. Contribution of each element to the variation of the liquid density is analyzed. The sequence of contributions of alloy elements to the variation of total liquid density is TiTa>W>Cr>Mo>Al>Co. The formation of MC consumes an abundant of Ti and Ta, resulting in the increase of liquid density from 1325 to 1315 ℃.
Key words:  Ni-based superalloy      freckle      segregation      density     
Received:  16 January 2012     
ZTFLH: 

TG146.1

 
Fund: 

National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00037     OR     https://www.ams.org.cn/EN/Y2012/V48/I5/541

[1] Pan Q Y, Huang W D, Li Y M, Lin X, Zhou Y H.  J Mater Sci Lett,1996; 15: 2112

[2] Zhang T, Ren W L, Dong J W, Li X, Ren Z M, Cao G H, Zhong Y B,Deng K, Lei Z S, Guo J T.  J Alloys Compd, 2009; 487: 612

[3] Liu G, Liu L, Zhao X B, Zhang W G, Jin T, Zhang J, Fu H Z. Acta Metall Sin, 2010; 46: 77

    (刘刚, 刘林, 赵新宝, 张卫国, 金涛, 张军, 傅恒志.金属学报, 2010; 46: 77)

[4] Shi C X, Zhong Z Y.  Acta Metall Sin, 2010; 46: 1281

    (师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)

[5] Zhang S, Tian S G, Yu H C, Su Y, Yu X F, Yu L L.  Acta Metall Sin,2011; 47: 61

    (张姝, 田素贵, 于慧臣, 苏勇, 于兴福, 于莉丽. 金属学报, 2011; 47: 61)

[6] Gu J P, Beckermann C, Giamei A F.  Metall Mater Trans,1997; 28A: 1533

[7] Schneider M C, Gu J P, Beckermann C, Boettinger W J, Kattner U R. Metall Mater Trans, 1997; 28A: 1517

[8] Auburtin P, Wang T, Cockcroft S L, Mitchell A.  Metall Mater Trans,2000; 31B: 801

[9] Beckermann C, Gu J P, Boettinger W J.  Metall Mater Trans,2000; 31A: 2545

[10] Valdes J, King P, Liu X B.  Metall Mater Trans,2010; 41A: 2408

[11] Amouyal Y, Seidman D N.  Acta Mater, 2011; 59: 6729

[12] Madison J, Spowart J E, Rowenhorst D J, Aagesen L K,Thornton K, Pollock T M.  Metall Mater Trans, 2012; 43A: 369

[13] Lu J W, Chen F L.  J Cryst Growth, 1996; 165: 137

[14] Pollock T M, Murphy W H.  Metall Mater Trans, 1996; 27A: 1081

[15] Neilson D G, Incropera F P.  Warme Stoffubertrag, 1991; 27: 1

[16] Du W, Li J G, Fu H Z.  Trans Nonferrous Met Soc, 1998; 8: 83

[17] Hobbs R A, Tin S, Rae C M F.  Metall Mater Trans,2005; 36A: 2761

[18] Huang T W, Liu L, Zhang W G, Zhang J, Fu H Z.  Acta Metall Sin, 2009; 45: 1225

     (黄太文, 刘林, 张卫国, 张军, 傅恒志. 金属学报, 2009; 45: 1225)

[19] Long F, Yoo Y S, Seo S M, Jin T, Hu Z Q, Jo C Y.  J Mater Sci Technol, 2011; 27: 101

[20] Cutler E R, Wasson A J, Fuchs G E.  J Cryst Growth,2009; 311: 3753

[21] D'Souza N, Lekstrom M, Dong H B.  Mater Sci Eng,2008; A490: 258

[22] Tin S, Pollock T M.  J Mater Sci, 2004; 39: 7199

[23] Tin S, Pollock T M.  Metall Mater Trans, 2003; 34A: 1953

[24] Wang L, Li C Q, Dong J X, Zhang M C.  Chem Eng Commun,2009; 196: 754

[25] Wang L, Yao Y J, Dong J X, Zhang M C.  Chem Eng Commun,2010; 197: 1571

[26] Guan X R, Zheng Z, Tong J, Liu E Z, Yu Y S, Zhu Y X,Zhai Y C.  Chin J Nonferrous Met, 2009; 19: 272

     (管秀荣, 郑志, 佟健, 刘恩泽, 于永泗, 朱耀宵, 翟玉春.中国有色金属学报, 2009; 19: 272)

[27] Mukai K, Li Z S, Mills K C.  Metall Mater Trans,2005; 36B: 255

[28] De Laeter J R, Bohlke J K, De Bievre P, Hidaka H, Peiser H S,Rosman K J R, Taylor P D P.  Pure Appl Chem, 2003; 75: 683

[29] Li Z S, Mills K C, McLean M, Mukai K.  Metall Mater Trans,2005; 36B: 247
 
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[5] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[6] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[7] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[8] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[9] DUAN Huichao, WANG Chunyang, YE Hengqiang, DU Kui. Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. 金属学报, 2023, 59(10): 1291-1298.
[10] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
[11] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[12] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[13] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[14] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[15] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
No Suggested Reading articles found!