Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (5): 547-554    DOI: 10.3724/SP.J.1037.2012.00056
论文 Current Issue | Archive | Adv Search |
STUDY ON DEPOSITION OF MAGNETIC FILMS USING ARC ION PLATING
CHANG Zhengkai, XIAO Jinquan, CHEN Yuqiu, LIU Shanchuan, GONG Jun, SUN Chao
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

CHANG Zhengkai, XIAO Jinquan, CHEN Yuqiu, LIU Shanchuan, GONG Jun, SUN Chao. STUDY ON DEPOSITION OF MAGNETIC FILMS USING ARC ION PLATING. Acta Metall Sin, 2012, 48(5): 547-554.

Download:  PDF(7062KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Arc ion plating (AIP) has been widely used for depositing various kinds of coatings due to the excellent characteristics of high deposition rate, convenient parameter control, high degree of ionization in the target material, good coating--substrate adhesion, flexibility of target arrangements and merits of producing coatings with high packing density. Magnetic films, with a few micrometers or less, could be utilized in the electronics industry, such as magnetic recording, magnetic microelectromechanical systems, magneto optical modulator, and so on. In AIP process, due to magnetic shielding and self--induced magnetic field, arc spot on the surface of the magnetic target moved outside all the time, and the erosion of the magnetic target could not be stable. In this study, arc spot outside moving and unstable erosion of the magnetic target in arc ion plating have been investigated. The distribution of the magnetic field of the nonmagnetic target and the magnetic target under an additional magnetic field was simulated by the finite element method (FEM). The effect of magnetic field on the arc spot movement was researched. With the physical mechanism of the arc spot discharge, the feasibility on the solution of the application problem of the magnetic target has been discussed by the program of the composited structure target, which were composed of magnetic target materials and target shell of low saturation vapor pressure metal, target shell of insulating ceramics, or target shell of soft magnetic metal. The results showed that all these solutions could solve the problem of arc spot outside moving efficiently. In the study, the transition temperature is (136.6±23.0) ℃ in the solutions of the target shell of low saturation vapor pressure metal or insulating ceramics, during which the arc striking frequently transformed to the controlled movement of arc spot.
Key words:  arc ion plating      magnetic material      finite element method      magnetic field distribution      composited sructure target     
Received:  13 February 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00056     OR     https://www.ams.org.cn/EN/Y2012/V48/I5/547

[1] Ueda K, Tabata H, Kawai T.  Appl Phys Lett, 2001; 79: 988

[2] Ramesh R, Spaldin N A.  Nat Mater, 2007; 6: 21

[3] Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A. Nat Mater, 2003; 2: 673

[4] Bakonyi I, Burgstaller A, Socher W, Voitlander J,Toth-Kadar E, Lovas A, Ebert H, Wachtel E, Willmann N, Liebermann H H. Phys Rev, 1993; 47B: 14961

[5] Kashiwagi M, Ido S.  Vacuum, 1999; 53: 33

[6] Huang J C A, Hu Y M, Yu C C.  J Appl Phys, 1998; 83: 7046

[7] Di G Q.  Chin Pat, CN101570851A, 2009

    (狄国庆. 中国专利, CN101570851A, 2009)

[8] Chen J S, Lau S P, Zhang Y B, Sun Z, Tay B K, Sun C Q.  Thin Solid Films, 2003; 443: 115

[9] Wang Q M, Kim K H.  Acta Mater, 2009; 57: 4974

[10] Sun L, Li H K, Lin G Q, Dong C.  J Vac Sci Technol, 2010; 28A: 1299

[11] Chang Z K, Wan X S, Pei Z L, Gong J, Sun C.  Surf Coat Technol, 2011; 205: 4690

[12] Wang T G, Jeong D, Liu Y, Wang Q, Iyengar S, Melin S, Kim K H.  Surf Coat Technol, 2012; 206: 2638

[13] Lieberman M A, Lichtenberg A J, translated by Pu Y K, Zhu X M, Guo Z G, Wang J L, Mao Z G, Feng Y, Wang X,Song X B, Ma J, Zhang G L, Ma J X, Chen Y.  Priciples of Plasma Discharges and Materials Processing. 2nd Ed.,Beijing: Science Press, 2007: 9

(Lieberman M A, Lichtenberg A J著, 蒲以康, 朱悉铭, 郭志刚, 王久丽, 毛志国, 冯阳, 王旭, 宋旭波,马杰, 张谷令, 马锦秀, 陈宇译. 等离子体放电原理与材料处理. 第二版. 北京: 科学出版社, 2007: 9)

[14] Lang W C, Xiao J Q, Gong J, Sun C, Huang R F, Wen L S.  Acta Metall Sin, 2010; 46: 372

     (郎文昌, 肖金泉, 宫骏, 孙超, 黄荣芳, 闻立时. 金属学报, 2010; 46: 372)

[15] Daalder J E.  J Phys, 1983; 16D: L177

[16] Drouet M G.  IEEE Trans Plasma Sci, 1985; 13: 235

[17] Beilis I I.  IEEE Trans Plasma Sci, 2002; 30: 2124

[18] Hantzsche E.  IEEE Trans Plasma Sci, 2003; 31: 799

[19] Lang W C, Xiao J Q, Gong J, Sun C, Huang R F, Wen L S.  Vacuum, 2010; 84: 1111

[20] Feng D, Qiu D R.  Metal Physics. vol.4,Beijing: Science Press, 1998: 441

     (冯端, 丘第荣著. 金属物理学. 第4卷, 北京: 科学出版社, 1998: 441)

[21] Dai D S, Qian K M.  Ferromagnetics. vol.1, Beijing: Science Press, 1987: 120

     (戴道生, 钱昆明著, 铁磁学(上册). 第1卷, 北京: 科学出版社, 1987: 120)

[22] Lang Y J, Che Y C.  Thermodynamics Databook of Inorganic Matter.Shenyang: Northeast University Press, 1993: 513

     (梁英教, 车荫昌编. 无机物热力学数据手册. 沈阳: 东北大学出版社, 1993: 513)
[1] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[2] LIU Guanxi, HUANG Guanghong, LUO Xuekun, SHEN Zaoyu, HE Limin, LI Jianping, MU Rende. The Influence of Surface Shot Peening on the Isothermal Oxidation Behavior of NiCrAlYSi Coating[J]. 金属学报, 2021, 57(5): 684-692.
[3] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[4] Jin LIU,Yuanxia LAO,Yuan WANG. Effects of Cu on Microstructure and Mechanical Properties of AlN/TiN-Cu Nanocomposite Multilayers[J]. 金属学报, 2017, 53(4): 465-471.
[5] Shilu ZHAO,Zhen ZHANG,Jun ZHANG,Jianming WANG,Zhenggui ZHANG. MICROSTRUCTURE AND WEAR RESISTANCE OF TiAlZrCr/(Ti, Al, Zr, Cr)N GRADIENT FILMS DEPOSITED BY MULTI-ARC ION PLATING[J]. 金属学报, 2016, 52(6): 747-754.
[6] Xin PENG, Sumeng JIANG, Xudong SUN, Jun GONG, Chao SUN. CYCLIC OXIDATION AND HOT CORROSION BEHAVIORS OF A GRADIENT NiCoCrAlYSi COATING[J]. 金属学报, 2016, 52(5): 625-631.
[7] Yongkui LI, Chunyi QUAN, Shanping LU, Qingyang JIAO, Shijian LI, Zhonghai SUN. STUDY ON SHAPE CORRECTION OF THE THIN PLATE OF TA15 TITANIUM ALLOY BY POST WELD HEAT TREATMENT[J]. 金属学报, 2016, 52(3): 281-288.
[8] Kechang HAN,Yiqi LIU,Guoqiang LIN,Chuang DONG,Kaiping TAI,Xin JIANG. STUDY ON ATOMIC-SCALE STRENGTHENING MECHANISM OF TRANSITION-METAL NITRIDE MNx (M=Ti, Zr, Hf) FILMS WITHIN WIDE COMPOSITION RANGES[J]. 金属学报, 2016, 52(12): 1601-1609.
[9] ZHU Ruidong, DONG Wenchao, LIN Huaqiang, LU Shanping, LI Dianzhong. FINITE ELEMENT SIMULATION OF WELDING RESIDUAL STRESS FOR BUFFER BEAM OF CRH2A HIGH SPEED TRAIN[J]. 金属学报, 2014, 50(8): 944-954.
[10] WU Duoli, JIANG Sumeng, FAN Qixiang, GONG Jun, SUN Chao. ISOTHERMAL OXIDATION BEHAVIOR OF Al-Cr COATING ON Ni-BASED SUPERALLOY[J]. 金属学报, 2014, 50(10): 1170-1178.
[11] LI Yongkui, CHEN Jundan, LU Shanping. RESIDUAL STRESS IN THE WHEEL OF 42CrMo STEEL DURING QUENCHING[J]. 金属学报, 2014, 50(1): 121-128.
[12] YU Daqian, LU Xuyang, MA Jun, JIANG Sumeng, LIU Shanchuan, GONG Jun, SUN Chao. STUDY OF OXIDATION BEHAVIOR OF THE GRADIENT NiCrAlY COATING AT 1000 AND 1100 ℃[J]. 金属学报, 2012, 48(6): 759-768.
[13] LU Xuyang, YU Daqian, JIANG Sumeng, LIU Shanchuan, GONG Jun, SUN Chao. HOT CORROSION BEHAVIOR OF A (NiCoCrAlYSiB+AlSiY) COMPOSITE COATING[J]. 金属学报, 2012, 48(4): 461-468.
[14] JIANG Wenchun WOO Wanchuck WANG Bingying TU Shan–Tung . A STUDY OF RESIDUAL STRESS IN THE REPAIR WELD OF STAINLESS STEEL CLAD PLATE BY NEUTRON DIFFRACTION MEASUREMENT AND FINITE ELEMENT METHOD[J]. 金属学报, 2012, 48(12): 1525-1529.
[15] SHI Jing PEI Zhiliang,GONG Jun SUN Chao, MUDERS C M, JIANG Xin. EFFECT OF Si CONTENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ti-Al-Si-N FILMS DEPOSITED BY CATHODIC VACUUM 
ARC ION PLATING
[J]. 金属学报, 2012, 48(11): 1349-1356.
No Suggested Reading articles found!