Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (2): 183-186    DOI: 10.3724/SP.J.1037.2011.00547
论文 Current Issue | Archive | Adv Search |
STUDY ON THE ELECTRO–REFINING SILICON IN MOLTEN SALT CaCl2–NaCl–CaO
WANG Shulan, CHEN Xiaoyun
School of Sciences, Northeastern University, Shenyang 110004
Cite this article: 

WANG Shulan CHEN Xiaoyun. STUDY ON THE ELECTRO–REFINING SILICON IN MOLTEN SALT CaCl2–NaCl–CaO. Acta Metall Sin, 2012, 48(2): 183-186.

Download:  PDF(475KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Use Cu–31Si alloy (31mol% Si) prepared by inductive melting metallurgical grade silicon as anode and molybdenum as cathode and reference electrode, the cathodic behavior of molten salt 81CaCl2–8.0 NaCl–8.5CaO–2.5Si (Mole fraction, %) at 1173 K was studied by means of cyclic voltammetry and chronopotentiometry, and the reduction steps of silicon from the molten salt were discussed. The electro–refining of silicon was performed in the two electrode system under the voltage of −0.2 V. SEM, EDS and inductively coupled plasma atomic emission spectrometry (ICPAES) technologies were used to analyze and characterize the morphology and composition of the deposited silicon. Polycrystalline silicon was obtained after the electro–refining. Main impurity in the metallurgical grade silicon are greatly decreased. Especially boron and phosphorous which are very harmful to solar cell grade silicon were greatly removed. The contents of boron and phosphorous are decreased from 42×10−6 and 25×10−6 to 4.5×10−6 and 8.2×10−6, respectively. The current efficiency of the electro–refining process is 84.4%.
Key words:  molten salt      electro–refining      silicon     
Received:  30 August 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51154002)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00547     OR     https://www.ams.org.cn/EN/Y2012/V48/I2/183

[1] O’Mara W C, Herring R B, Hunt I P. Handbook of Semiconductor Silicon Technology. New Jersey: Noyes Publications, 1990: 795

[2] Ciszek T F, Schwuttke G H, Yang H K. IBM J Res Dev, 1978; 23: 270

[3] Martorano M A, Ferreira Neto J B, Oliveira T S, Tsubak T O. Mater Sci Eng, 2011; B176: 217

[4] Ciftja A, Engh T A, Tangstad M, Anne K, Johannes O E. J Miner Met Mater Soc, 2010; 51: 56

[5] Pires J C S, Otubo J, Braga A F B, Mei P R. J Mater Process Technol, 2005; 169: 21

[6] Rousseau S, Benmansour M, Morvan D, Amouroux J. Solar Energy Mater Solar Cells, 2007; 91: 1906

[7] Hunt L P, Dosaj V D, McCormick J R, Crossman L D. Proc International Symposium on Solar Energy, Washington DC, Moly 5–17, 1976: 200

[8] Chu T L, Chu S S. J Electrochem Soc, 1983; 130: 455

[9] Dietl J. Sol Cells, 1983; 10: 145

[10] Ma X D, Zhang J, Wang T M, Li T J. Rare Met, 2009; 28: 221

[11] Santos I C, Goncalves A P, Santos C S, Almeida M, Afonso M H, Cruz M J. Hydrometallurgy, 1990; 23: 237

[12] Yu Z L, Ma W H, Dai Y N, Yang B, Liu D C, Dai W P, Wang J X. Trans Nonferrous Met Soc China, 2007; 17: 1030

[13] Aulish H A, Eisenrith K H, Urbach H P. J Mater Sci, 1984; 19: 1710

[14] Aratani F, Sakaguchi Y, Yuge N. Bull Jpn Inst Met, 1991; 30: 433

[15] Schulze F W, Fenzl H J, Geim K, Hecht H D, Aulich H A. in Ralph E L ed.. Proc 17th IEEE Photovoltaic Specialists Conf, New York: IEEE, 1984: 584

[16] Nohira T, Yasuda K, Ito Y. Nat Mater, 2003; 2: 397

[17] Deng Y, Wang D, Xiao W, Jin X, Hu X, Chen G Z. J Phys Chem, 2005; 109B: 14043

[18] Pistorius P C, Fray D J. J South Afr Inst Min Metall, 2006; 106: 31

[19] Yasuda K, Nohira T, Hagiwara R, Ogata Y H. Electrochim Acta, 2007; 53: 106

[20] Li J, Yan J F, Lai Y Q, Tian A L, Jia M, Yi J G. Acta Energy Solar Sin, 2010; 31: 1068

(李劬, 闫剑锋, 赖延清, 田忠良, 贾明, 伊继光. 太阳能学报, 2010; 31: 1068)

[21] Cai Z Y, Li Y G, He X F, Liang J L. Metall Mater Trans, 2010; 41B: 1033

[22] SGTE. http://www.sgte.org/fact/documentation/FTsalt/ CaCl2–NaCl.jpg

[23] Wang S L, Zhang F S, Liu X, Zhang L J. Thermo Acta, 2008; 470: 105

[24] Katsutoshi O, Ryosuke O S. JOM, 2002; 54: 59

[25] Schwandt C, Fray D J. Electrochim Acta, 2005; 51: 66

[26] Wang S L, Wang W, Li S C, Cao S H. IJMMM, 2010; 17: 791

[27] Luo Y R. Handbook of Chemical Bonding Energy. Beijing: Science press, 2005: 48

(罗渝然. 化学键能数据手册. 北京: 科学出版社, 2005: 48)

[28] Liang Y J, Che Y C. Handbook of Thermodynamic Data of of Inorganic Substances. Shenyang: Northeastern University press, 1993: 1

(梁英教, 车阴昌. 无机物热力学数据手册. 沈阳: 东北大学出版社, 1993: 1)

[29] SGTE. http://www.crct.polymtl.ca/fact/phase diagram.php? file=Cu–Si.jpg&dir=SGTE

[30] Zhang Z X, Wang R K. Principle and Method of Electrochemistry. Beijing: Science Press, 2000: 55

(张祖训, 汪尔康. 电化学原理与方法. 北京: 科学出版社, 2000: 55)
[1] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[2] GAO Yunming, HE Lin, QIN Qingwei, LI Guangqiang. ZrO2 Solid Electrolyte Aided Investigation on Electrodeposition in Na3AlF6-SiO2 Melt[J]. 金属学报, 2022, 58(10): 1292-1304.
[3] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[4] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[5] WANG Guiqin,WANG Qin,CHE Honglong,LI Yajun,LEI Mingkai. Effects of Silicon on the Microstructure and Propertiesof Cast Duplex Stainless Steel with Ultra-HighChromium and High Carbon[J]. 金属学报, 2020, 56(3): 278-290.
[6] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[7] Jun HUANG, Haiwen LUO. Influence of Annealing Process on Microstructures, Mechanical and Magnetic Properties of Nb-Containing High-Strength Non-Oriented Silicon Steel[J]. 金属学报, 2018, 54(3): 377-384.
[8] Guimin ZENG,Haiwen LUO,Jun LI,Jian GONG,Xianhao LI,Xianhui WANG. Experimental Studies and Numerical Simulation on the Nitriding Process of Grain-Oriented Silicon Steel[J]. 金属学报, 2017, 53(6): 743-750.
[9] Sihan CHEN,Tian LIANG,Long ZHANG,Yingche MA,Zhengjun LIU,Kui LIU. Study on Evolution Mechanism of bcc Phase During Solution Treatment in 6%Si High Silicon Austenitic Stainless Steel[J]. 金属学报, 2017, 53(4): 397-405.
[10] Chengxu HE,Fuyao YANG,Guochun YAN,Li MENG,Guang MA,Xin CHEN,Weimin MAO. EFFECT OF NORMALIZING ON TEXTURES OF THIN-GAUGE GRAIN-ORIENTED SILICON STEEL[J]. 金属学报, 2016, 52(9): 1063-1069.
[11] Gang LIU, Chao LI, Ye MA, Ruijun ZHANG, Yongkai LIU, Yuhui SHA. HEAT STABILITY AND SILICONIZING BEHAVIOR OF SURFACE NANOSTRUCTURE OF SILICON STEEL INDUCED BY ASYMMETRIC ROLLING[J]. 金属学报, 2016, 52(3): 307-312.
[12] Si CHEN,Fei QIN,Tong AN,Ruiming WANG,Jingyi ZHAO. EFFECTS OF ANNEALING PROCESS ON MICRO-STRUCTURE EVOLUTION AND PROTRUSION OFCOPPER FILLED IN THROUGH-SILICON VIAS[J]. 金属学报, 2016, 52(2): 202-208.
[13] Yuanke MO,Zhihao ZHANG,Jianxin XIE,Hongjiang PAN. EFFECTS OF RECRYSTALLIZATION ON THE MICROSTRUCTURE, ORDERING AND MECHANICALPROPERTIES OF COLD-ROLLED HIGH SILICON ELECTRICAL STEEL SHEET[J]. 金属学报, 2016, 52(11): 1363-1371.
[14] Gongtao LIU,Ping YANG,Weimin MAO. EFFECT OF FINAL ANNEALING ATMOSPHERE ON SECONDARY RECRYSTALLIZATION BEHAVIOR IN THIN GAUGE MEDIUM TEMPERATURE GRAIN ORIENTED SILICON STEEL[J]. 金属学报, 2016, 52(1): 25-32.
[15] Tao LIU,Jiasheng DONG,Guang XIE,Yisheng WANG,Hui LI,Zhijun LI,Xingtai ZHOU,Langhong LOU. CORROSION BEHAVIOR OF GH3535 SUPERALLOY IN FLiNaK MOLTEN SALT[J]. 金属学报, 2015, 51(9): 1059-1066.
No Suggested Reading articles found!