Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (10): 1237-1247    DOI: 10.3724/SP.J.1037.2012.00172
Current Issue | Archive | Adv Search |
FORMATION OF SOLIDIFICATION AND HOMOGENISATION MICROPORES IN TWO SINGLE CRYSTAL SUPERALLOYS PRODUCED BY HRS AND LMC PROCESSES
SHI Qianying 1,2, LI Xianghui 3, ZHENG Yunrong 2, XIE Guang 4,ZHANG Jian 4,5, FENG Qiang 1,2
1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
3. Science and Technology on Advanced High Temperature Structural Material, Beijing Institute of Aeronautical Materials, Beijing 100095
4. Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
5. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

. FORMATION OF SOLIDIFICATION AND HOMOGENISATION MICROPORES IN TWO SINGLE CRYSTAL SUPERALLOYS PRODUCED BY HRS AND LMC PROCESSES. Acta Metall Sin, 2012, 48(10): 1237-1247.

Download:  PDF(3586KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effects of processing techniques and alloying chemistry on the formation of solidification and homogenization micropores were investigated in this study for two single crystal nickel–based superalloys with different compositions produced by Bridgman (HRS) and LMC processes. The results show that the volume fraction of micropores in as–cast HRS alloy is lower than that in as–cast LMC alloy, and they are mainly influenced by alloy chemistry. After solution heat treatment, external and internal homogenization micropores are observed to form at the Al–depletion zone near the surface region and the internal zone away from the surface, respectively. The number of external homogenization micropores reduces with increasing the distance away from the surface. Responding to high temperature oxidizing environment (in air), the formation of such homogenization micropores is ascribed to fast outward diffusion of Al, which lead to the formation of Kirkendall voids within the Al–depletion zone. Additionally, the formation of internal homogenization micropores at high temperature is due to Kirkendall effect during the diffusion process of alloying elements between dendrite and interdendrite regions. Smaller primary dendrite arm spacing and lower level of solidification segregation in the LMC alloy results in much less internal homogenization micropores in comparison with the HRS alloy.

Key words:  single crystal superalloy      micropore      solution treatment      directional solidification      liquid metal cooling     
Received:  05 April 2012     
Fund: 

Supported by National Basic Research Program of China (No.2010CB631201)

Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00172     OR     https://www.ams.org.cn/EN/Y2012/V48/I10/1237

[1] Hu Z Q, Liu L R, Jin T, Sun X F. Aerial Eng, 2005; 31(3): 1

(胡壮麒, 刘丽荣, 金涛, 孙晓峰. 航空发动机, 2005; 31(3): 1)

[2] Pollock T M, Tin S. J Propul Power, 2006; 22: 361

[3] Guo J T. Materials Science and Engineering for Superalloys (Vol.1). Beijing: Science Press, 2008: 387

(郭建亭. 高温合金材料学(上册). 北京: 科学出版社, 2008: 387)

[4] Chen Q Z, Jones N, Knowles D M. Acta Mater, 2002; 50: 1095

[5] MacLachlan D W, Knowles D M. Mater Sci Eng, 2001; A302: 275

[6] Wang Z H, Zhao N R, Li J G, Hou G C, Jin T, Sun X F, Hu Z Q. J Mater Eng, 2008; (12): 46

(王志辉, 赵乃仁, 李金国, 侯贵臣, 金涛, 孙晓峰, 胡壮麒. 材料工程, 2008; (12): 46)

[7] Ott M, Mughrabi H. Mater Sci Eng, 1999; A272: 24

[8] Gayda J, Miner R V. Int J Fatigue, 1983; 5(3): 135

[9] Anton D L. Acta Metall, 1984; 32: 1669

[10] Link T, Zabler S, Epishin A, Haibel A, Bansal M, Thibault X. Mater Sci Eng, 2006; A425: 47

[11] Lecomte–Beckers J. Metall Mater Trans, 1988; 19A: 2341

[12] Anton D L, Giamei A F. Mater Sci Eng, 1985; 76: 173

[13] Bokstein B S, Epishin A I, Link T, Esin V A, Rodin A O, Svetlov I L. Scr Mater, 2007; 57: 801

[14] Toloraya V N, Svetlov I L. Metally, 1991; 5: 70

[15] Komenda J, Henderson P J. Scr Mater, 1997; 37: 1821

[16] Epishin A, Link T. Philos Mag, 2004; 84: 1979

[17] Zhang J, Li J, Jin T, Sun X, Hu Z. J Mater Sci Technol, 2010; 26: 889

[18] Wilson B C, Cutler E R, Fuchs G E. Mater Sci Eng, 2008;A479: 356

[19] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Mater Lett, 2004; 58: 2290

[20] Lamm M, Singer R F. Metall Mater Trans, 2007; 38A: 1177

[21] Fritzemeier L G. In: Duhl D N, Maurer G, Antolovich S, Lund C, Reichman S, eds., Superalloys 1988, Chamption, PA: TMS, 1988: 265

[22] Chen Q Z, Kong Y H, Jones C N, Knowles DM. Scr Mater, 2004; 51: 155

[23] Elliott A J, Pollock T M. Metall Mater Trans, 2007; 38A: 871

[24] Brundidge C L, Vandrasek D, Wang B, Pollock T M. Metall Mater Trans, 2012; 43A: 965

[25] Elliott A, Pollock T, Tin S, King W, Huang S C, Gigliotti M. Metall Mater Trans, 2004; 35A: 3221

[26] Lohm¨uller A, Eber W, Grobmann J, Hoerdler M, Preuhs J, Singer R. In: Green K A, Pollock T M, Kissinger R D, eds., Superalloys 2000, Champion, PA: TMS, 2000: 181

[27] Grossman J, Preuhs J, Esser W, Singer R F. In: Mitchell A, Ridgway L, Baldwin M, eds., Symposium Liquid Metal Processing Casting, New York, NY: AVS, 1999: 31

[28] Elliott A J, Feng G, Balsone S J, Schaeffer J C, Pollock T M, Gigliotti M F X. In: Srivatsan T S, ed., Processing and Fabrication of Advanced Materials XIV With Frontiers in

Materials Science 2005, Pittsburgh, PA: TMS, 2005, 267

[29] Tang W S, Shen J, Wang D W, Zhang J, Lou L H. In: The Minerals, Metals & Materials Society, eds., TMS 2009 138th TMS Annual Meeting and Exhibition–Supplemental

Proceedings, Vol.1: Materials Proceeding and Properties, San Francisco, CA: TMS, 2009: 241

[30] Liu C, Li K W, Shen J, Zhang J, Lou L H. Metall Mater Trans, 2012; 43A: 405

[31] Kurz W, Fisher D J. Acta Metall, 1981; 29: 11

[32] Feng Q, Carroll L J, Pollock T M. Metall Mater Trans, 2006; 37A: 1949

[33] Hussain N, Shahid K A, Khan I H, Rahman S. Oxid Met, 1995; 43: 363

[34] Weber J H, Gilman P S. Scr Metall, 1984; 18: 479

[35] Rosenstein A, Tien J, Nix W. Metall Mater Trans, 1986; 17A: 151

[36] Levy M, Farrell P, Pettit F. Corrosion, 1986; 42: 708

[37] Karunaratne M S A, Cox D C, Carter P, Reed R C. In: Green K A, Pollock T M, Kissinger R D, eds., Superalloys 2000, Champion, PA: TMS, 2000: 263

[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[6] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[7] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[8] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[9] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[10] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[11] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[12] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[13] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[14] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[15] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
No Suggested Reading articles found!