|
|
EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo |
CHEN Jundan, MO Wenlin, WANG Pei, LU Shanping |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article:
CHEN Jundan MO Wenlin WANG Pei LU Shanping. EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo. Acta Metall Sin, 2012, 48(10): 1186-1193.
|
Abstract 42CrMo heat–resistant steel is a kind of structural steel, which is widely used in structural components such as crane weight–on–wheel, automobile crank shaft, locomotive gear hub and so on, for its good hardening ability, high temperature strength, good creep resistance, and little quenching deformation. However, in industry application, mismatching between the strength and the toughness always occurs for 42CrMo structure components. In order to solve the problem that the strength does not match the toughness in the manufacturing process for the polar crane for the nuclear power station, the effect of tempering temperature on the morphology and distribution of carbides and the impact toughness has been investigated for steel 42CrMo in this study. The experimental results indicated that the microstructure of the quenched steel 42CrMo after 500—650 ℃ tempering was characterized by tempering sorbite. As the tempering temperature increased, the Charpy absorbed energy at –12℃ initially increased and then decreased. The flake carbides after 500 and 530 ℃ tempering are not evenly distributed on the original martensite boundaries, the Charpy absorbed energy are 26 and 44 J, respectively. While the granular carbides are evenly distributed in the microstructure after 600℃ tempering, the Charpy absorbed energy reaches a maximum value of 104 J. When the tempering temperature is higher than 600 ℃, granular carbides coarsened obviously and the Charpy absorbed energy reduced notably. The morphology and distribution of carbides is the key factor that influences the impact toughness of steel 42CrMo. Morphology and structure analysis for the carbide was carried out by TEM together with EDS analysis, the results showed that the carbide after tempering treatment is (Fe, M)3C and Fe, Cr, Mo are the main alloy element in the carbide. When the tempering temperature is in the range of 560—600 ℃, the uniformly–distributed granular carides forms on the matrix and the impact toughness is over 60 J. As the tempering temperature continues increasing, the carbides will coarsen and the impact toughness will decrease. In order to obtain the good strength and toughness matching, for 42CrMo structure, it is recommended that the tempering temperature should be in the range of 550—590 ℃.
|
Received: 08 June 2012
|
|
Fund: Supported by Science and Technology Project of Liaoning Province (No.2010224008) |
[1] Li B. Master Dissertation, Shanghai Jiao Tong University, 2007(李波. 上海交通大学硕士学位论文, 2007)[2] Gong B Z. Hoisting Conveying Mach, 2002; (2): 9(宫本智. 起重运输机械, 2002; (2): 9)[3] Zhang Q F. Hoisting Conveying Mach, 2011; (3): 26(张全福. 起重运输机械, 2011; (3): 26)[4] Quan G Z, Li G S, Chen T, Wang W X, Zhang Y W, Zhou J. Mater Sci Eng, 2011; A528: 4643[5] Holzapfel H, Schulze V, V¨ohringer O, Macherauch E. Mater Sci Eng, 1998; A248: 9[6] Sarioglu F. Mater Sci Eng, 2001; A315: 98[7] Lin Y C, Chen M S, Zhong J. Mech Res Commun, 2008; 35: 142[8] Ge Y S, Wang C H, Meng H Z, Lu Z Y. Heavy Cast Forg, 2005; (2): 27(葛永胜, 王成辉, 孟焕紫, 路振英. 大型铸锻件, 2005; (2): 27)[9] Zhao L P, Liu Z C, Yang H, Feng D C. Spec Steel, 2004; 25(4): 21(赵莉萍, 刘宗昌, 杨慧, 冯佃臣. 特殊钢, 2004; 25(4): 21)[10] Liu D Z, Li Y F. Heat Treat Technol Equip, 2008; 29(3): 74(刘多智, 李延峰. 热处理技术与装备, 2008; 29(3): 74)[11] Gu J J, Qin Y Q, Chen Z L, Lu Q H. Hot Working Technol, 2010; 39(22): 160(顾俊杰, 秦优琼, 陈志林, 卢庆华. 热加工工艺, 2010; 39(22): 160)[12] Chu J H, Liu S Y. Heavy Cast Forg, 2007; (4): 6(褚锦辉, 刘时雨. 大型铸锻件, 2007; (4): 6)[13] Wang M L, Wang J, Wang L X. Bearing, 2009; (12): 37(王明礼, 王建, 王丽霞. 轴承, 2009; (12): 37)[14] Li J, Chen Z W, Liu D K. Heavy Cast Forg, 2000; (4): 25(李进, 陈增武, 刘定坤. 大型铸锻件, 2000; (4): 25)[15] Wang X T, Yao Y L, Shao T H. Acta Metall Sin, 1990; 26(6): 40(王笑天, 姚引良, 邵谭华. 金属学报, 1990; 26(6): 40)[16] Dhua S K, Ray A, Sarma D S. Mater Sci Eng, 2001; A318: 197[17] Liu D Y, Xu H, Yang K, Bai B Z, Fang H S. Acta Metall Sin, 2004; 40: 882(刘东雨, 徐鸿, 杨昆, 白秉哲, 方鸿生. 金属学报, 2004; 40: 882)[18] Gao G H, Zhang H, Bai B Z. Acta Metall Sin, 2011; 47: 513(高古辉, 张寒, 白秉哲. 金属学报, 2011; 47: 513)[19] Zhang C Y, Wang Q F, Ren J X, Li R X, Wang M Z, Zhang F C, Yan Z S. Mater Des, 2012; 36: 220[20] Zhang P, Zhang F C, Wang T S. Acta Metall Sin, 2011; 47: 1038(张朋, 张福成, 王天生. 金属学报, 2011; 47: 1038)[21] Wang R F, Xu K, Xue G. Hot Work Technol, 2007; 36(16): 43(王任甫, 徐科, 薛钢. 热加工工艺, 2007; 36(16): 43)[22] Bakhtiari R, Ekrami A. Mater Sci Eng, 2009; A525: 159[23] Cui Y X, Wang C L. Fracture Analysis. Harbin: Harbin Institute of Technology Press, 1998: 73(崔约贤, 王常利. 金属断口分析. 哈尔滨: 哈尔滨工业大学出版社, 1998: 73)[24] Wang P, Lu S P, Xiao N M, Li D Z, Li Y Y. Mater Sci Eng, 2010; A527: 3210[25] Beachem C D. Metall Trans, 1975; 6A: 377 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|