|
|
MAGNETISM OF MONOLITHIC AND PARTIALLY CRYSTALLIZED AMORPHOUS Al–Ni–Y ALLOYS |
GONG Jing 1, YANG Hongwang 1, YANG Baijun 2, WANG Ruichun 1, LI Rongde 1,WANG Jianqiang 2 |
1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article:
GONG Jing YANG Hongwang YANG Baijun WANG Ruichun LI Rongde WANG Jianqiang. MAGNETISM OF MONOLITHIC AND PARTIALLY CRYSTALLIZED AMORPHOUS Al–Ni–Y ALLOYS. Acta Metall Sin, 2011, 47(3): 333-336.
|
Abstract Al90Ni2Y8 and Al84Ni8Y8 alloy ribbons were produced by melt–spinning, the structural characterization of the as–quenched samples was performed by XRD, the thermal stability of the as–quenched alloys was characterized using a differential scanning calorimeter (DSC), the magnetism of both Al90Ni2Y8 and Al84Ni8Y8 alloys fully amorphous and partially crystallized were investigated using a superconducting quantum interference device (SQUID). The results show that the magnetism of thamorphous Al90Ni2Y8 and Al84Ni8Y8alloys are diamagnetism, and the alloys are magnetized more easily with higher Ni content. When the magnetic field reaches 0.5 T, the specific magnetizations of Al90Ni2Y8 and Al84Ni8Y8alloy are −0.083 and −0.091 Am2/kg, and the magnetisabilities are −1.66×10−5 and −1.2×10−5, respectively. The magnetism of alloys remains unchanged after partially crystallized, but the absolute value of specific magnetization is correspondingly increased. After partially crystallization, the absolute value of specific magnetization of the Al90Ni2Y8 alloy increases from 0.083 Am2/kg to 0.231 Am2/kg, and that of the Al84Ni8Y8 alloy increases from 0.091 Am2/kg to 0.163 Am2/kg corresponding to a magnetic field of 0.5 T, and also the absolute value of magnetisability reaches to 4.62×10−5 and 3.26×10−5, respectiely, which is attributed to the Ni and Y elemental build–up around the nanometer sized pure Al crystals after partially crystallizatin.
|
Received: 13 August 2010
|
Fund: Supported by National Natural Science Foundation of China (No.50874075) and Project of Shenyang Bureau of Science and Technological Development (No.1091177–1–00) |
[1] Yoshizawa Y, Oguma S, Yamauchi K. J Appl Phys, 1988; 64: 6044[2] Fujii Y, Fujita H, Seki A. J Appl Phys, 1991; 70: 6241[3] Suzuki K, Makino A, Inoue A, Masumoto T. J Appl Phys, 1993; 74: 3316[4] Liu T, Gao Y F, Xu Z X, Zhao Z T, Ma R Z. J Appl Phys, 1996; 80: 3972[5] Guo S F, Wu Z Y, Liu L. J Alloy Compd, 2009; 468: 54[6] Duhaj P, Svec P, Janickovic D, Matko I, Hlasnik M. Mater Sci Eng, 1992; B14: 357[7] Hu Y, Liu L, Chan K C, Pan M X, Wang W H. Mater Lett, 2006; 60: 1080[8] Inoue A, Ohtera K, Tsai A P, Masumoto T. Jpn J Appl Phys, Part 2, 1988; 27: L280[9] He Y, Poon S J, Shiflet G J. Science, 1988; 241: 1640[10] Kim Y H, Inoue A, Masumoto T. Mater Trans JIM, 1990; 31: 747[11] Kim Y H, Inoue A, Masumoto T. Mater Trans JIM, 1991; 32: 331[12] Cochrane R F, Schumacher P, Greer A L. Mater Sci Eng, 1991; 133: 367[13] Benameur T, Inoue A. Mater Sci Froum, 1995; 179–181: 813[14] Gogebakan M, Warren P J, Cantor B. Mater Sci Eng, 1997; A226–228: 168[15] Foley J C, Allen D R, Perepezko J H. Scr Mater, 1996; 35: 655[16] Inoue A, Matsumoto N, Masumoto T. Mater Trans JIM, 1990; 31: 493[17] Guo F Q, Poon S J, Shiflet G J. Mater Sci Forum, 2000; 331–337: 31[18] Yang B J, Yao J H, Zhang J, Yang H W, Wang J Q, Ma E. Scr Mater, 2009; 61: 423[19] Zhuo L C, Pang S J, Wang H, Zhang T. Chin Phys Lett, 2009; 26: 066402[20] Wan D F, Luo S H. Physics of Magnetism. Beijing: Electronic Industry Press, 1987: 232(宛德福, 罗世华. 磁性物理. 北京: 电子工业出版社, 1987: 232)[21] Hono K, Zhang Y, Tsai A P, Inoue A, Sakurai T. Scr Metall Mater, 1995; 32: 191 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|