Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (3): 333-336    DOI: 10.3724/SP.J.1037.2010.00406
论文 Current Issue | Archive | Adv Search |
MAGNETISM OF MONOLITHIC AND PARTIALLY CRYSTALLIZED AMORPHOUS Al–Ni–Y ALLOYS
GONG Jing 1, YANG Hongwang 1, YANG Baijun 2, WANG Ruichun 1, LI Rongde 1,WANG Jianqiang 2
1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

GONG Jing YANG Hongwang YANG Baijun WANG Ruichun LI Rongde WANG Jianqiang. MAGNETISM OF MONOLITHIC AND PARTIALLY CRYSTALLIZED AMORPHOUS Al–Ni–Y ALLOYS. Acta Metall Sin, 2011, 47(3): 333-336.

Download:  PDF(466KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Al90Ni2Y8 and Al84Ni8Y8 alloy ribbons were produced by melt–spinning, the structural characterization of the as–quenched samples was performed by XRD, the thermal stability of the as–quenched alloys was characterized using a differential scanning calorimeter (DSC), the magnetism of both Al90Ni2Y8 and Al84Ni8Y8 alloys fully amorphous and partially crystallized were investigated using a superconducting quantum interference device (SQUID). The results show that the magnetism of thamorphous Al90Ni2Y8 and Al84Ni8Y8alloys are diamagnetism, and the alloys are magnetized more easily with higher Ni content. When the magnetic field reaches 0.5 T, the specific magnetizations of Al90Ni2Y8 and Al84Ni8Y8alloy are −0.083 and −0.091 Am2/kg, and the magnetisabilities are −1.66×10−5 and −1.2×10−5, respectively. The magnetism of alloys remains unchanged after partially crystallized, but the absolute value of specific magnetization is correspondingly increased. After partially crystallization, the absolute value of specific magnetization of the Al90Ni2Y8 alloy increases from 0.083 Am2/kg to 0.231 Am2/kg, and that of the Al84Ni8Y8 alloy increases from 0.091 Am2/kg to 0.163 Am2/kg corresponding to a magnetic field of 0.5 T, and also the absolute value of magnetisability reaches to 4.62×10−5 and 3.26×10−5, respectiely, which is attributed to the Ni and Y elemental build–up around the nanometer sized pure Al crystals after partially crystallizatin.
Key words:  amorphous alloy      nanocrystallization      magnetism     
Received:  13 August 2010     
Fund: 

Supported by National Natural Science Foundation of China (No.50874075) and Project of Shenyang Bureau of Science and Technological Development (No.1091177–1–00)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00406     OR     https://www.ams.org.cn/EN/Y2011/V47/I3/333

[1] Yoshizawa Y, Oguma S, Yamauchi K. J Appl Phys, 1988; 64: 6044

[2] Fujii Y, Fujita H, Seki A. J Appl Phys, 1991; 70: 6241

[3] Suzuki K, Makino A, Inoue A, Masumoto T. J Appl Phys, 1993; 74: 3316

[4] Liu T, Gao Y F, Xu Z X, Zhao Z T, Ma R Z. J Appl Phys, 1996; 80: 3972

[5] Guo S F, Wu Z Y, Liu L. J Alloy Compd, 2009; 468: 54

[6] Duhaj P, Svec P, Janickovic D, Matko I, Hlasnik M. Mater Sci Eng, 1992; B14: 357

[7] Hu Y, Liu L, Chan K C, Pan M X, Wang W H. Mater Lett, 2006; 60: 1080

[8] Inoue A, Ohtera K, Tsai A P, Masumoto T. Jpn J Appl Phys, Part 2, 1988; 27: L280

[9] He Y, Poon S J, Shiflet G J. Science, 1988; 241: 1640

[10] Kim Y H, Inoue A, Masumoto T. Mater Trans JIM, 1990; 31: 747

[11] Kim Y H, Inoue A, Masumoto T. Mater Trans JIM, 1991; 32: 331

[12] Cochrane R F, Schumacher P, Greer A L. Mater Sci Eng, 1991; 133: 367

[13] Benameur T, Inoue A. Mater Sci Froum, 1995; 179–181: 813

[14] Gogebakan M, Warren P J, Cantor B. Mater Sci Eng, 1997; A226–228: 168

[15] Foley J C, Allen D R, Perepezko J H. Scr Mater, 1996; 35: 655

[16] Inoue A, Matsumoto N, Masumoto T. Mater Trans JIM, 1990; 31: 493

[17] Guo F Q, Poon S J, Shiflet G J. Mater Sci Forum, 2000; 331–337: 31

[18] Yang B J, Yao J H, Zhang J, Yang H W, Wang J Q, Ma E. Scr Mater, 2009; 61: 423

[19] Zhuo L C, Pang S J, Wang H, Zhang T. Chin Phys Lett, 2009; 26: 066402

[20] Wan D F, Luo S H. Physics of Magnetism. Beijing: Electronic Industry Press, 1987: 232

(宛德福, 罗世华. 磁性物理. 北京: 电子工业出版社, 1987: 232)

[21] Hono K, Zhang Y, Tsai A P, Inoue A, Sakurai T. Scr Metall Mater, 1995; 32: 191
[1] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[2] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[3] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[4] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[5] HU Xiang, GE Jiacheng, LIU Sinan, FU Shu, WU Zhenduo, FENG Tao, LIU Dong, WANG Xunli, LAN Si. Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon[J]. 金属学报, 2021, 57(4): 542-552.
[6] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
[7] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[8] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[9] GENG Yaoxiang, WANG Yingmin. Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research[J]. 金属学报, 2020, 56(11): 1558-1568.
[10] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[11] JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. 金属学报, 2019, 55(12): 1561-1568.
[12] Jianhai YANG,Yuxiang ZHANG,Liling GE,Xiao CHENG,Jiazhao CHEN,Yang GAO. Effect of Hybrid Surface Nanocrystallization Before Welding on Microstructure and Mechanical Properties of Friction Stir Welded 2A14 Aluminum Alloy Joints[J]. 金属学报, 2017, 53(7): 842-850.
[13] Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy[J]. 金属学报, 2017, 53(7): 817-823.
[14] Dianguo MA,Yingmin WANG,Kunio YUBUTA,Yanhui LI,Wei ZHANG. Effect of Co Content on the Structure and Magnetic Properties of Melt-Spun Fe55-xCoxPt15B30 Alloys[J]. 金属学报, 2017, 53(5): 609-614.
[15] Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability[J]. 金属学报, 2017, 53(2): 233-238.
No Suggested Reading articles found!