Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (11): 1450-1458    DOI: 10.3724/SP.J.1037.2011.00319
论文 Current Issue | Archive | Adv Search |
THERMAL FIELD MODEL FOR LASER+GMAW-PHYBRID WELDING OF TCS STAINLESS STEEL BASED ON THE PREDICTED KEYHOLE SHAPE
ZHANG Zhuanzhuan, XU Guoxiang, WU Chuansong
1) Key Lab for Liquid--Solid Structure Evolution and Materials Processing (Ministry of Education), Shandong University, Jinan 250061
2) School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003
Cite this article: 

ZHANG Zhuanzhuan XU Guoxiang WU Chuansong . THERMAL FIELD MODEL FOR LASER+GMAW-PHYBRID WELDING OF TCS STAINLESS STEEL BASED ON THE PREDICTED KEYHOLE SHAPE. Acta Metall Sin, 2011, 47(11): 1450-1458.

Download:  PDF(2329KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In order to describe the distribution characteristics of laser energy inside the keyhole reasonably, the ray tracing method is used to deal with the multiple reflections of laser beam in the keyhole and Fresnel absorption on the keyhole wall. The line-source based keyhole model is modified. The predicted shape and size of the keyhole are employed to determine the distribution parameters of the volumetric heat source for laser beam welding, which are applied to the combined heat source model for hybrid laser+ pulsed gas metal arc welding (laser+GMAW-P) process. Based on such an adaptive heat source model, the numerical analysis of quasi-steady state temperature field in hybrid welding of TCS stainless steel is conducted. The hybrid welding experiments of TCS stainless steel are carried out, and the predicted weld shape and size are compared with the measured results to validate the established thermal model for hybrid welding. It is found that the thermal model for hybrid welding of TCS stainless steel based on the predicted keyhole shape can well simulate the temperature profiles and weld formation. Besides, the thermal model is used to calculate the shape and dimension of heat-affected zone (HAZ) and thermal cycles at different positions in HAZ under different process conditions, and the characteristics of thermal cycles of TCS stainless steel in hybrid welding are analyzed, which lay the foundation for the prediction of microstructure and properties of TCS stainless steel weld joints.
Key words:  keyhole shape      hybrid welding      TCS stainless steel      thermal model      thermal cycle     
Received:  20 May 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51074098)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00319     OR     https://www.ams.org.cn/EN/Y2011/V47/I11/1450

[1] Wang B S, Ma L, Tian J S, Mao H G. Welding, 2008; (5): 54

(王宝森, 马立, 田劲松, 毛惠刚. 焊接, 2008; (5): 54)

[2] Wang L X, Song C J. Iron Steel, 2008; 43: 71

(王立新, 宋长江. 钢铁, 2008; 43: 71)

[3] Wu Y L, Li J L, Li J Q, Zhang M H. Welding, 2007; (12): 37

(武永亮, 李加良, 李践桥, 张明华. 焊接, 2007; (12): 37)

[4] Defalco J. Welding J, 2007; 86: 47

[5] Mahrle A, Beyer E. J Laser Appl, 2006; 18: 169

[6] Bagger C, Olsen F O. J Laser Appl, 2005; 17: 2

[7] Guen E L, Carin M, Fabbro R, Coste F, Masson P L. Int J Heat Mass Tran, 2011; 54: 1313

[8] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2008; 44: 478

(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2008; 44: 478)

[9] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2008; 44: 641

(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2008; 44: 641)

[10] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2009; 45: 107

(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2009; 45: 107)

[11] Kaplan A. J Phys, 1994; 27D: 1805

[12] Cho J H, Na S J. J Phy, 2006; 39D: 5372
[1] Zhe SONG, Shengchuan WU, Yanan HU, Guozheng KANG, Yanan FU, Tiqiao XIAO. The Influence of Metallurgical Pores on Fatigue Behaviors of Fusion Welded AA7020 Joints[J]. 金属学报, 2018, 54(8): 1131-1140.
[2] Yingkai SHAO, Yuxi WANG, Zhibin YANG, Chunyuan SHI. Plasma-MIG Hybrid Welding Hot Cracking Susceptibility of 7075 Aluminum Alloy Based on Optimum of Weld Penetration[J]. 金属学报, 2018, 54(4): 547-556.
[3] Suqiang ZHANG,Hongyun ZHAO,Fengyuan SHU,Guodong WANG,Wenxiong HE. Effect of Welding Thermal Cycle on Corrosion Behavior of Q315NS Steel in H2SO4 Solution[J]. 金属学报, 2017, 53(7): 808-816.
[4] Dean DENG, Sendong REN, Suo LI, Yanbin ZHANG. Influence of Multi-Thermal Cycle and Constraint Condition on Residual Stress in P92 Steel Weldment[J]. 金属学报, 2017, 53(11): 1532-1540.
[5] Guoxiang XU, Weiwei ZHANG, Peng LIU, Baoshuai DU. NUMERICAL ANALYSIS OF FLUID FLOW IN LASER+GMAW HYBRID WELDING[J]. 金属学报, 2015, 51(6): 713-723.
[6] WU Dong, WANG Xin, DONG Wenchao, LU Shanping. EFFECTS OF WELDING THERMAL CYCLE AND AGING TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTY OF A Ni-Fe BASE SUPERALLOY[J]. 金属学报, 2014, 50(3): 313-322.
[7] XU Guoxiang WU Chuansong QIN Guoliang WANG Xuyou. FINITE ELEMENT ANALYSIS OF TEMPERATURE FIELD IN LASER+GMAW HYBRID WELDING FOR T-JOINT OF ALUMINUM ALLOY[J]. 金属学报, 2012, 48(9): 1033-1041.
[8] ZHANG Zhuanzhuan WU Chuansong Gao Jinqiang. PREDICTION OF GRAIN GROWTH IN HYBRID WELDING HAZ OF TCS STAINLESS STEEL[J]. 金属学报, 2012, 48(2): 199-204.
[9] HUO Yushuang, WU Chuansong, CHEN Maoai. NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING[J]. 金属学报, 2011, 47(6): 706-712.
[10] WANG Xiaolin LI Mingyu WANG Chunqing. MICROSTRUCTURE AND RELIABILITY OF LASER JET SOLDER BALL BONDING SOLDER JOINTS[J]. 金属学报, 2010, 46(9): 1115-1120.
[11] WU Chuansong XU Guoxiang QIN Guoliang WANG Xuyou LIN Shangyang. EFFECT OF ARC POWER ON THERMAL FIELD CHARACTERISTICS OF LASER+GMAW-P HYBRID WELDING[J]. 金属学报, 2009, 45(8): 1000-1005.
[12] XU Guoxiang WU Chuansong QIN Guoliang WANG Xuyou LIN Shangyang. NUMERICAL SIMULATION OF WELD FORMATION IN LASER+GMAW HYBRID WELDING III. Treatment of Pulsed Arc Action and Improvement of Heat Source Modes[J]. 金属学报, 2009, 45(1): 107-112.
[13] . NUMERICAL SIMULATION OF WELD FORMATION IN LASER+GMAW HYBRID WELDING,II. Combined Volumetric Distribution Mode of Hybrid Welding Heat Source[J]. 金属学报, 2008, 44(6): 641-646 .
[14] . NUMERICAL SIMULATION OF WELD FORMATION IN LASER+GMAW HYBRID WELDING,I. Volumetric Distribution Mode Describing Laser Thermal Action[J]. 金属学报, 2008, 44(4): 478-482 .
[15] CHEN Maoai; WU Chuansong; YANG Min; TANG Yimin; WU Renjie. Response of Second Phase Particles in Ti-V-Nb Microalloyed Steel During Weld Thermal Cycles[J]. 金属学报, 2004, 40(2): 148-154 .
No Suggested Reading articles found!