Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (2): 199-204    DOI: 10.3724/SP.J.1037.2011.00571
论文 Current Issue | Archive | Adv Search |
PREDICTION OF GRAIN GROWTH IN HYBRID WELDING HAZ OF TCS STAINLESS STEEL
ZHANG Zhuanzhuan, WU Chuansong, Gao Jinqiang
Key Lab for Liquid–Solid Structure Evolution and Materials Processing (Ministry of Education), Shandong University, Jinan 250061
Cite this article: 

ZHANG Zhuanzhuan WU Chuansong Gao Jinqiang. PREDICTION OF GRAIN GROWTH IN HYBRID WELDING HAZ OF TCS STAINLESS STEEL. Acta Metall Sin, 2012, 48(2): 199-204.

Download:  PDF(844KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  According to the formula of grain growth under isothermal condition, the kinetics equation of ferritic grain growth in heat affected zone (HAZ) was obtained, which was combined with the calculated thermal cycles to predict the grain growth in HAZ of TCS stainless steel under the new–type welding procedure–hybrid welding. The grain sizes in HAZ of TCS stainless steel have been calculated for three welding conditions. Simulation results are validated by the average grain sizes measured on the metallographic images of the welding joint of TCS stainless steel. Preliminary discussion has been made on correlation of the grain growth with the thermal cycles and the effect of local variation in thermal cycles on the grain growth.
Key words:  grain growth      hybrid welding      TCS stainless steel      heat affect zone     
Received:  15 September 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51074098)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00571     OR     https://www.ams.org.cn/EN/Y2012/V48/I2/199

[1] Du B, Sun J T, Xu Y J, Mao H, Jia Y L, Wang L X, Wang Z B, Zhang X B, Yu W, Liu Z C,Chen Z Y, Zhang Z C. Weld Join, 2009; (1): 1

(杜兵, 孙静涛, 徐玉军, 毛 辉, 贾玉力, 王立新, 王志斌, 张心保, 于 维, 刘志臣, 陈增有, 张志昌. 焊接, 2009; (1): 1)

[2] Li J L, Li J Q, Wu Y L, Huo L X, Zhang Y F. Weld Join, 2007; (7): 17

(李加良, 李践桥, 武永亮, 霍立兴, 张玉风. 焊接, 2007; (7): 17)

[3] Dilthey U. Proc 8th Int Symposium on Innovations in Welding and Joining for a New Era in Manufacturing, Kyoto, Japan, 2008: 1

[4] Defalco J. Weld J, 2007; 86: 47

[5] Mo C L, Qian B N, Li D Z, Li J L. Chin J Mater Res, 2001; 15: 343

(莫春立, 钱百年, 李殿中, 李晶丽. 材料研究学报, 2001; 15: 343)

[6] Mo C L, Li D Z, Qian B N, Guo X M. Acta Metall Sin, 2001; 37: 307

(莫春立, 李殿中, 钱百年, 国旭明. 金属学报, 2001; 37: 307)

[7] Wu C S. Welding Thermal Processes and Weld Pool Behaviors. New York: CRC Press, 2011; 47

[8] Cho J H, Na S J. J Phys, 2006; 39D: 5372

[9] Kaplan A. J Phys, 1994; 27D: 1805

[10] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2008; 44: 641

(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2008; 44: 641)

[11] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2009; 45: 107

(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2009; 45: 107)

[12] Zhang Z Z, Xu G X, Wu C S. Acta Metall Sin, 2011; 47: 1450

(张转转, 胥国祥, 武传松. 金属学报, 2011; 47: 1450)

[13] Wang L X, Song C J. Iron Steel, 2008; 43: 71

(王立新, 宋长江. 钢铁, 2008; 43: 71)
[1] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[2] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[3] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
[4] Zhe SONG, Shengchuan WU, Yanan HU, Guozheng KANG, Yanan FU, Tiqiao XIAO. The Influence of Metallurgical Pores on Fatigue Behaviors of Fusion Welded AA7020 Joints[J]. 金属学报, 2018, 54(8): 1131-1140.
[5] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[6] Yingkai SHAO, Yuxi WANG, Zhibin YANG, Chunyuan SHI. Plasma-MIG Hybrid Welding Hot Cracking Susceptibility of 7075 Aluminum Alloy Based on Optimum of Weld Penetration[J]. 金属学报, 2018, 54(4): 547-556.
[7] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[8] Yajun HUI,Hui PAN,Wenyuan LI,Kun LIU,Bin CHEN,Yang CUI. Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel[J]. 金属学报, 2017, 53(2): 129-139.
[9] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[10] Guoxiang XU, Weiwei ZHANG, Peng LIU, Baoshuai DU. NUMERICAL ANALYSIS OF FLUID FLOW IN LASER+GMAW HYBRID WELDING[J]. 金属学报, 2015, 51(6): 713-723.
[11] ZHANG Hang, XU Qingyan, SHI Zhenxue, LIU Baicheng. NUMERICAL SIMULATION OF DENDRITE GRAIN GROWTH OF DD6 SUPERALLOY DURING DIRECTIONAL SOLIDIFICATION PROCESS[J]. 金属学报, 2014, 50(3): 345-354.
[12] ZHOU Deqiang, LIU Xiongjun, WU Yuan, WANG Hui, LV Zhaoping. RECRYSTALLIZATION BEHAVIOR AND ITS INFLU- ENCES ON MECHANICAL PROPERTIES OF AN ALUMINA-FORMING AUSTENITIC STAINLESS STEELS[J]. 金属学报, 2014, 50(10): 1217-1223.
[13] WU Yan, ZONG Yaping,ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION[J]. 金属学报, 2013, 49(7): 789-796.
[14] XU Guoxiang WU Chuansong QIN Guoliang WANG Xuyou. FINITE ELEMENT ANALYSIS OF TEMPERATURE FIELD IN LASER+GMAW HYBRID WELDING FOR T-JOINT OF ALUMINUM ALLOY[J]. 金属学报, 2012, 48(9): 1033-1041.
[15] NIE Wenjin SHANG Chengjia YOU Yang ZHANG Xiaobing Sundaresa Subramanian. MICROSTRUCTURE AND TOUGHNESS OF THE SIMULATED WELDING HEAT AFFECTED ZONE IN X100 PIPELINE STEEL WITH HIGH DEFORMATION RESISTANCE[J]. 金属学报, 2012, 48(7): 797-806.
No Suggested Reading articles found!