|
|
THREE--DIMENSIONAL RECONSTRUCTION OF GRAINS IN PURE IRON SPECIMEN |
LUAN Junhua1), LIU Guoquan1,2), WANG Hao1) |
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 |
|
Cite this article:
LUAN Junhua LIU Guoquan WANG Hao. THREE--DIMENSIONAL RECONSTRUCTION OF GRAINS IN PURE IRON SPECIMEN. Acta Metall Sin, 2011, 47(1): 69-73.
|
Abstract The informations of hree dimensional (3D) grain in real materials were rarely obtained directly, especially when the grain size, shape, topology and orientation were all required. By combining the classical serial sectioning and electron backscatter diffraction (EBSD) technique, a 3D digital visible model of a group of grains in a real pure iron specimen was constructed based on 400 parallel serial section images (about 150 grains appearing in each section image) with an average inter-section distance of (1.69±0.3) μm. The model presented enables the stereoscopic observation in a 3D space. Besides, this model can provide not only the quantitative geometric information including grain sizes, shapes and topological characteristics, but also the real orientation information of both the grains and their boundaries in 3D polycrystal space, which offers new insights into the digitalization and visualization of real material microstructures.
|
Received: 14 May 2010
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.50871017 and 50901008), Specialized Research Fund for the Doctoral
Program of Higher Education (No.200800080003) and China Postdoctoral Science Foundation (Nos.20090460209 and 201003050)
|
[1] Uchic M D, Kral M V, Spanos G, Dimiduk D M. Metall Mater Trans, 2004; 35A: 1925[2] MacPherson R D, Srolovitz D J. Nature, 2007; 446: 1053[3] von Neumann J. In: Herring C ed., Metal Interfaces. Cleveland: American Society for Metals, 1952: 108[4] Kinderlehrer D. Nature, 2007; 446: 995[5] Watanabe T. Mater Sci Forum, 2002; 408: 39[6] Watanabe T. Res Mech, 1984; 11: 47[7] Rohrer G S, Saylora D M, Dasherb B E, Adamsc B L, Rollett A D, Wynblatt P. Z Metall, 2004; 95: 197[8] Randle V, Rohrer G S, Miller H M, Coleman M, Owen G T. Acta Mater, 2008; 56: 2363[9] Fang X Y,WangWG, Rohrer G S, Zhou B X. Acta Metall Sin, 2010; 46: 404(方晓英, 王卫国, Rohrer G S, 周邦新. 金属学报, 2010; 46: 404)[10] Mishra S K, Pant P, Narasimhan K, Rollett A D, Samajdar I. Scr Mater, 2009; 61: 273[11] DeHoff R T. J Microsc, 1983; 131: 259[12] Holm E A, Duxbury P M. Scr Mater, 2006; 54: 1035[13] Desch C H. J Inst Met, 1919; 22: 241[14] Hull F C. Mater Sci Technol, 1988; 4: 778[15] Williams W M, Smith C S. Trans AIME, 1952; 194: 755[16] Rhines F N, Craig K R. Rousse Metal Trans, 1976; 7A: 1729[17] DeHoff R T, Liu G Q. Metall Trans, 1985; 16A: 2007[18] Sterio D C. J Microsc, 1985; 138: 127[19] Kral M V, Mangan M A, Spanos G, Rosenberg R O. Mater Charact, 2000; 45: 17[20] Wu K M. Acta Metall Sin, 2005; 41: 1237(吴开明. 金属学报, 2005; 41: 1237)[21] Wu K M, Enomoto M. Scr Mater, 2002; 46: 569[22] Chawla N, Sidhu R S, Ganesh V V. Acta Mater, 2006; 54: 1541[23] Dudek M A, Chawla N. Mater Charact, 2008; 59: 1364[24] Sharma H, Bohemen S M C, Petrov R H. Acta Mater, 2010; 58: 2399[25] Wu K M. Scr Mater, 2006; 54: 569[26] Dillon S J, Rohrer G S. In: Rollett A D ed., Proc 15th Int Conf Textures of Materials. Hoboken: John Wiley & Sons Pte Ltd, 2009: 117[27] Ghosh S, Bhandari Y, Groeber M. Computer–Aided Des, 2008; 40: 293[28] Groeber M, Ghosh S, Uchic M D, Dimiduk D M. Acta Mater, 2008; 56: 1257[29] Brahme A, Alvi M H, Saylor D, Fridyc J, Rollett A D. Scr Mater, 2006; 55: 75 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|