HYDROGEN EMBRITTLEMENT RESISTANCE OF AUSTENITIC ALLOYS AND ALUMINIUM ALLOYS
LI Yiyi, FAN Cungan, RONG Lijian, YAN Desheng, LI Xiuyan
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article:
LI Yiyi FAN Cungan RONG Lijian YAN Desheng LI Xiuyan. HYDROGEN EMBRITTLEMENT RESISTANCE OF AUSTENITIC ALLOYS AND ALUMINIUM ALLOYS. Acta Metall Sin, 2010, 46(11): 1335-1346.
Abstract Hydrogen embrittlement is of the technological importance in which the hydrogen in metallic materials can cause the loss in tensile ductility, cracking or damage and degradation of other mechanical properties. The common hydrogen resistant alloys are austenitic stainless steels, precipitation-strengthened austenitic alloys, low alloy steels and aluminum alloys etc.. As austenitic alloys have high hydrogen resistance properties and their strength can be improved by precipitation strengthening, they are commonly used in hydrogen conditions. IMR had developed a series hydrogen resistant steels, such as HR-1, HR-2, HR-3, J75 and J100 as well as Al-6Mg-0.2Sc-0.15Zr hydrogen resistant aluminum alloy. These alloys posses comprehensive mechanical properties and high hydrogen resistant ability. In addition, alloy smelting, casting, forging, welding and heat treatment should be followed the laws of the preparation. It is important to control the microstructures in order to improve the performance of resistant hydrogen.
[1] Fan C G, Li Y Y, Zhao X J. Inside Information of Institute of Metal Research, Chinese Academy of Sciences, 1985 (范存淦, 李依依, 赵学军. 中国科学院金属研究所内部资料, 1985) [2] Li Y Y. Inside Information of Institute of Metal Research, Chinese Academy of Sciences, 1985 (李依依. 中国科学院金属研究所内部资料, 1985) [3] Xing Z S, Li Y Y, Deng Q Z. Inside Information of Institute of Metal Research, Chinese Academy of Sciences, 1988 (邢中枢, 李依依, 邓庆洲. 中国科学院金属研究所内部资料, 1988) [4] Coates D J, Mortimer B, Hendry A. Corros Sci, 1982; 22: 951 [5] Briant C L. Hydrogen Assisted Cracking of Austenitic Stainless Steels. Warrendale, PA: AIME, 1981: 527 [6] West A J, Holbrook J H. Hydrogen in Austenitic Stainless Steels: Effects of Phase Transformations and Stress State. Warrendale: AIME, 1981: 607 [7] Aerospace Structural Metals Handbooks. Michigan: Mechanical Properties Data Center, 1975: 1 [8] Schmidt A S, Verfuss F, Wicke E. J Nucl Mater, 1985; 131: 247 [9] Rozenak P, Bergman R. Mater Sci Eng, 2006; A437: 366 [10] Li X Y, Li Y Y. Hydrogen Damage in Austenitic Alloys. Beijing: Science Press, 2003: 45 (李秀艳, 李依依. 奥氏体合金的氢损伤. 北京: 科学出版社, 2003: 45) [11] Li Y Y. Inside Information of Institute of Metal Research, Chinese Academy of Sciences, 1995 (李依依. 中国科学院金属研究所内部资料, 1995) [12] Hicks P, Altstetter C. Mater Trans, 1992; 23A: 237 [13] Thompson A W, Brooks J A. Metall Mater Trans, 1975; 6: 1431 [14] Thompson A W. Metall Mater Trans, 1976; 7A: 315 [15] Rhodes C, Thompson A. Metall Mater Trans, 1977; 8A: 949 [16] Chu W Y. Hydrogen Damage and Delayed Fracture. Beijing: Metallurgical Industry Press, 1988: 10 (褚武杨. 氢损伤和滞后断裂. 北京: 冶金工业出版社, 1988: 10) [17] Li Y Y, Wang A C, Yang K. Trans Mat Res Soc Jpn, 1993; 18: 545 [18] Li X Y, Ma L M, Li Y Y. Acta Metall Sin, 2002; 38: 593 (李秀艳, 马禄铭, 李依依. 金属学报, 2002; 38: 593) [19] Wang A C, Li Y Y, Deng W, Fan C G, Li D F, Yang K, Shi C X. Chin J Mater Res, 1995; 9: 1 (王安川, 李依依, 邓 文, 范存淦, 李冬法, 杨柯, 师昌绪. 材料研究学报, 1995; 9: 1) [20] Wang A C, Fan C G, Yang K, Li Y Y. Inside Information of Institute of Metal Research, Chinese Academy of Sciences, 1993 (王安川, 范存淦, 杨柯, 李依依. 中国科学院金属研究所内部资料, 1993) [21] Liu S, Zheng H, Gui Q H, Ma A H, Yu H B, Wang L B, Yang H G. Acta Metall Sin, 2004; 40: 393 (刘 实, 郑 华, 贵全红, 马爱华, 于洪波, 王隆保, 杨洪广. 金属学报, 2004; 40: 393) [22] Zhang J, Li X Y, Rong L J, Zheng Y N, Zhu S Y. Acta Metall Sin, 2006; 42: 469) (张 建, 李秀艳, 戎利建, 郑永男, 朱升云. 金属学报, 2006; 42: 469) [23] San–Martin A, Manchester F D. The Al–H System Phase Diagram Evaluations. Section 2, 1992: 17 [24] Zhao W T, Yan D S, Rong L J. Acta Metall Sin, 2005; 41: 1150 (赵卫涛, 闫德胜, 戎利建. 金属学报, 2005; 41: 1150) [25] Du G, Deng J W, Wang Y L, Yan D S, Rong L J. Scr Mater, 2009; 61: 532 [26] Du G, Deng J W, Yan D S, Zhao M J, Rong L J. J Mater Sci Technol, 2009; 25: 749 [27] Du G, Yan D S, Rong L J. Acta Metall Sin, 2008; 44: 1209 (杜刚, 闫德胜, 戎利建. 金属学报, 2008; 44: 1209) [28] Harada Y, Dunand D C. Scr Mater, 2003; 48: 219 [29] Ferreira P J, Robertson I M, Birnbaum H K. Acta Mater, 1998; 46: 1749 [30] Tomota Y, Xia Y, Inoue K. Acta Mater, 1998; 46: 1577 [31] Ferreira P J, Robertson I M, Birnbaum H K. Acta Mater, 1999; 47: 2991 [32] Bampton C C, Jones I P, Loretto M H. Acta Metall, 1978; 26: 39 [33] Schulthess T C, Turchi P E A, Gonis A, Nieh T G. Acta Mater, 1998; 46: 2215 [34] Brooks J A, Thompson A W. Metall Trans, 1993; 24A: 1983 [35] Zhang J, Li X Y, Rong L J. Acta Metall Sin, 2006; 42: 469 (张 建, 李秀艳, 戎利建. 金属学报, 2006; 42: 469) [36] Harada Y, Dunand D C. Intermetallics, 2009; 17: 17 [37] http://www.lm.gov.cn/gb/training/2005–11/11/content 90745.htm [38] Zhang J, Li X Y, Rong L J, Liao B, Fan Y, Tan Y, Mei J. Chin J Mater Res, 2007; 21: 459 (张 建, 李秀艳, 戎利建, 廖 彬, 范英, 谭 云, 梅军. 材料研究学报, 2007; 21: 459) [39] Lu S P, Dong W C, Li D Z, Li Y Y. Compt Mater Sci, 2009; 45: 327 [40] Li D J, Lu S P, Li D Z, Li Y Y. Adv Mater Res, 2010; 97–101: 3978