Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (1): 97-103    DOI:
论文 Current Issue | Archive | Adv Search |
FIRST-PRINCIPLES CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF AB2 TYPE INTERMETALLICS IN ZA62 MAGNESIUM ALLOY
ZHOU Dianwu1); XU Shaohua2); ZHANG Fuquan2); PENG Ping2); LIU Jinshui2)
1 State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body; Hunan University; Changsha 410082 2 School of Materials Science and Engineering; Hunan University; Changsha 410082
Cite this article: 

ZHOU Dianwu XU Shaohua ZHANG Fuquan PENG Ping LIU Jinshui. FIRST-PRINCIPLES CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF AB2 TYPE INTERMETALLICS IN ZA62 MAGNESIUM ALLOY. Acta Metall Sin, 2010, 46(1): 97-103.

Download:  PDF(982KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Structural stabilities, elastic properties and electronic structures of Mg2Sn, MgZn2 and MgCu2 in ZA62 magnesium alloy have been determined from first-principles calculations by using Castep and Dmol program based on the density functional theory. The calculated heats of formation and cohesive energies showed that Mg2 Sn has the strongest alloying ability and MgCu2 the highest structural stability. The calculated bulk moduli (B), anisotropy values (A), Young's moduli (E), shear moduli (G) and Poisson ratio (ν) showed that MgZn2 and MgCu2 both are ductile, on the contrary, Mg2 Sn is brittle, and among the three phases MgZn2 is a phase with the best plasticity. Their tested melting temperatures are within the ranges calculated from elastic constants (±300 K) and bulk moduli (±500 K), the estimated values from elastic constant have the smallest average relative error, the calculated melting temperature of Mg2Sn phase is in well agreement with the experimental one and the error relative to the experiment result is about 0.31%. MgCu2 has higher melting temperature, i.e. better structural stability among the three compounds. The calculations of thermodynamic properties show that the Gibbs free energy of MgCu2 is also the smallest within 298-573 K range, indicating the structural stability of MgCu2  does not change with the elevated temperature. The calculations of the density of states (DOS) and Mulliken electronic populations showed that the reason of MgCu2 having highest structural stability in ZA62 magnesium alloy attributes to MgCu2 phase having more ionic bonds below Fermi level compared with those of Mg2 Sn and MgZn2 phases.

Key words:  magnesium alloy      intermetallics      electronic structure      structural stability      elastic property     
Received:  01 July 2009     
ZTFLH: 

TG146.2

 
Fund: 

Supported by the PhD Programs Foundation of Ministry of Education of China (No.200805321032),  National Natural Science Foundation of China (No.50771044), Natural Science Foundation of Hunan Province (No.09JJ6079) and the Program for Changjiang Scholars and the Innovative Research Team in University (No.531105050037)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2010/V46/I1/97

[1] Li Z J, Gu X N, Lou S Q, Zheng Y F. Biomaterials, 2008; 29: 1329
[2] Sun Y S,Wen K Z, Yuan G Y. Chin Nonferrous Met, 1999; 9: 55
(孙扬善, 翁坤忠, 袁广银. 中国有色金属学报, 1999; 9: 55)
[3] Au–Yang M Y, Cohen M L. Phys Rev, 1969; 178: 1358
[4] Arunsingh, Dayal B. J Phys, 1970; 3C: 2037
[5] Imai Y, Watanabe A. Intermetallics, 2002; 10: 333
[6] Grosch G H, Range K J. J Alloys Compd, 1996; 235: 250
[7] Ghosh G, Vaynman S, Asta M, Fine M E. Intermetallics, 2007; 15: 44
[8] Fast L, Wills J M, Johansson B, Eriksson O. Phys Rev, 1995; 51B: 17431
[9] Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C. J Phys: Condens Matter, 2002; 14: 2717
[10] Marlo M, Milman V. Phys Rev, 2000; 62B: 2899
[11] Vanderbilt D. Phys Rev, 1990; 41B: 7892
[12] Hammer B, Hansen L B, Norkov J K. Phys Rev, 1999; 59B: 7413
[13] Franscis G P, Payne M C. J Phys: Condens Matter, 1990; 2: 4395
[14] Monkhorst H J, Pack J D. Phys Rev, 1976; 13B: 5188
[15] Huang K. Solid State Physics. Beijing: High Education Press, 1985: 68
(黄昆. 固体物理学. 北京: 高等教育出版社, 1985: 68)

[16] Zhang H, Shang S L, Saal J E, Saengdeejing A, Wang Y, Chen L Q, Liu Z K. Intermetallics, 2009; 17: 878
[17] Ganeshan S, Shang S L, Wang Y, Mantina M, Liu Z K. Intermetallics, 2009; 17: 313
[18] Corkill J L, Cohen M L. Phys Rev, 1993; 48B: 17138
[19] Medvedeva M I, Gornostyrev Y N , Novikov D L, Mryasov V, Freeman A J. Acta Mater, 1998; 46: 3433
[20] Sahu B R. Mater Sci Eng, 1997; B49: 74
[21] Li C H, Hoe J L, Wu P. Phys Chem Solids, 2003; 64: 201
[22] Ansara I, Dinsdale A T, Rand M H. Thermodynamic Database for Light Metal Alloys. Brussels: European Commission, 1998: 368
[23] Zubov V I, Tretiakov N P, Teixeira R J N, Sanchez O J F. Phys Lett, 1995; 198A: 470
[24] Ishii Y, Fujiwara T. Non–Cryst Solids, 2002; 312–314: 494
[25] Davis L C, Whitten W B, Danielson G C. J Phys Chem Solids, 1967; 28: 439
[26] Cheng C H. J Phys Chem Solids, 1967; 28: 413
[27] YuWY, Wang N, Xiao X B, Tang B Y, Peng L M, Ding W J. Solid State Sci, 2009; 11: 1400
[28] Hong S Y, Fu C L. Intermetallics, 1999; 7: 5
[29] Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M. Phys Rev, 1990; 41B: 10311
[30] Mattesini M, Ahuja R, Johansson B. Phys Rev, 2003; 68B: 184108
[31] Fine M E, Brown H L M. Scr Metall Mater, 1984; 18: 951
[32] Zhang X D. Intermetallics, 1995; 3: 137

[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[3] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[4] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[5] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[6] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[7] HUANGFU Hao, WANG Zilong, LIU Yongli, MENG Fanshun, SONG Jiupeng, QI Yang. A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties[J]. 金属学报, 2022, 58(2): 231-240.
[8] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[9] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[10] MAO Fei, LU Hao, TANG Fawei, GUO Kai, LIU Dong, SONG Xiaoyan. First-Principle Calculation on the Effect of Mn and In on the Structural Stability and Magnetic Moment of SmCo7 Alloys[J]. 金属学报, 2021, 57(7): 948-958.
[11] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[12] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[13] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[14] WANG Mingkang, YUAN Junhao, LIU Yufeng, WANG Qing, DONG Chuang, ZHANG Zhongwei. Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys[J]. 金属学报, 2021, 57(1): 95-102.
[15] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
No Suggested Reading articles found!