Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (9): 1077-1082    DOI:
论文 Current Issue | Archive | Adv Search |
NUMERICAL SIMULATIONS OF THE INTERGRANULAR FRACTURE IN NANOCRYSTALLINE Ni
WU Bo1;2; WEI Yueguang2; TAN Jiansong1; WANG Jianping1
1) Engine Engineering Center; China North Engine Research Institute; Langfang 065000
2) State Key Laboratory of Nonlinear Mechanics; Institute of Mechanics; Chinese Academy of Sciences; Beijing 100190
Cite this article: 

WU Bo WEI Yueguang TAN Jiansong WANG Jianping. NUMERICAL SIMULATIONS OF THE INTERGRANULAR FRACTURE IN NANOCRYSTALLINE Ni. Acta Metall Sin, 2009, 45(9): 1077-1082.

Download:  PDF(1058KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The intergranular fracture characteristics in nanocrystalline and ultra--fine polycrystalline metallic materials present intensive size effect and microstructure geometry effect. The conventional elastic--plastic constitutive theory is unable to describe these effects because it doesn't contain any length parameters to characterize the scale changing. Regarding this, a micro--structured model was proposed for the study on intergranular fracture of nanocrystalline and microcrystalline metals (mainly for the fcc metals). The hardening and size effects of material plastic deformation are described by the computational model based on the conventional theory of mechanism--based strain gradient plasticity (CMSG). A cohesive interface model was used to simulate the processes of grain--boundary sliding and separation, the initiation and propagation of intergranular cracks until the material fracture. The tensile experiment and stress--strain curves of nanocrystalline Ni were simulated by using the present model. Then the relation between macroscopic mechanical behaviors and intergranular crack's initiation and propagation in nanocrystalline Ni was investigated. Through the simulation to the experimental result in literature, the validity of the proposed model calculated nanocrystalline and ultra--fine polycrystalline mechanical properties was confirmed. At the same time, the simulation results show that the high strain gradient effects and severely plastic hardening of grain are induced by inhomogeneous plastic deformation, and the grain boundary induced deformation has a significant influence on the overall mechanical properties of nanocrystalline metals.

Key words:  nanocrystalline      intergranular fracture      strain gradient plasticity      finite element simulation     
Received:  08 January 2009     
ZTFLH: 

TG111.91

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.10432050 and 10721202)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I9/1077

[1] Schiφtz J, Vegge T, Di T F D, Jacobsen K W. Phys Rev, 1999; 60B: 971
[2] van Swygenhoven H, Caro A, Farkas D. Scr Mater, 2001; 44: 1513
[3] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H. Nat Mater, 2004; 3: 43
[4] Farkas D, van Swygenhoven H, Derlet P M. Phys Rev, 2002; 66B: 060101–1–4
[5] Cao A, Wei Y. Phys Rev, 2007; 76B: 024113
[6] Schiφtz J, Di T D, Jacobsen K W. Nature, 1998; 391: 561
[7] Fleck N A, Hutchinson J W. Adv Appl Mech, 1997; 33: 295
[8] Huang Y, Qu S, Hwang K C, Li M, Gao H. Int J Plast, 2004; 20: 753
[9] Gao H, Huang Y, Nix WD, Hutchinson J W. J Mech Phys Solids, 1999; 47: 1239
[10] Needleman A. Int J Fract, 1990; 40: 21
[11] Camacho G T, Ortiz M. Int J Solids Struct, 1996; 33: 2899
[12] Chandra N, Li H, Shet C, Ghonem H. Int J Solids Struct, 2002; 39: 2827
[13] Hutchinson J W, Evans A G. Acta Mater, 2000; 48: 125
[14] Turon A, Camanho P P, Costa J, D´avila C G. An Interface Damage Model for the Simulation of Delamination
Under Variable–Mode Ratio in Composite Materials. NASA Langley Research Center, Hampton, NASA/TM–2004–213277
[15] Warner D H, Sansoz F, Molinari J F. Int J Plast, 2006; 22: 754
[16] van der Sluis O, Schreurs P J G, Meijer H E H. Mech Mater, 2001; 33: 499
[17] Iesulauro E, Ingraffea A R, Arwade S, Wawrzynek P A. Fatigue Fract Mech, 2002; 33: 1417
[18] Wei Y J, Anand L. J Mech Phys Solids, 2004; 52: 2587
[19] Wang N, Wang Z R, Aust K T, Erb U. Acta Metal Mater, 1995; 43: 519
[20] Zhu B, Asaro R J, Krysl P, Bailey R. Acta Mater, 2005; 53: 4825

[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[3] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[4] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[5] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[6] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
[7] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[8] Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. 金属学报, 2018, 54(8): 1193-1203.
[9] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[10] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[11] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[12] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[13] Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders[J]. 金属学报, 2017, 53(6): 733-742.
[14] Yufeng ZHENG,Yuanhao WU. Revolutionizing Metallic Biomaterials[J]. 金属学报, 2017, 53(3): 257-297.
[15] Jiaojiao DU,Guojian LI,Qiang WANG,Yonghui MA,Huimin WANG,Mengmeng LI. GROWTH MODE EVOLUTION AND SUBSEQUENT MAGNETIC PROPERTIES OF Fe FILMS WITH DIFFERENT GRAIN SIZES UNDER A HIGH MAGNETIC FIELD[J]. 金属学报, 2015, 51(7): 799-806.
No Suggested Reading articles found!