Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (7): 856-860    DOI:
论文 Current Issue | Archive | Adv Search |
LOW--CYCLE FATIGUE BEHAVIOR OF AS--EXTRUDED Mg--x%Al--3%Ni ALLOYS
CHEN Lijia; WANG Xin; ZHI Ying; XU Yanwu
School of Materials Science and Engineering; Shenyang University of Technology; Shenyang 110178
Cite this article: 

CHEN Lijia WANG Xin ZHI Ying XU Yanwu. LOW--CYCLE FATIGUE BEHAVIOR OF AS--EXTRUDED Mg--x%Al--3%Ni ALLOYS. Acta Metall Sin, 2009, 45(7): 856-860.

Download:  PDF(820KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to the low density, high specific strength and stiffness, magnesium alloys are being considered for automotive and aerospace applications. The structural applications of magnesium components need a decent low--cycle fatigue performance, because cyclic loading is often encountered. In order to identify the low--cycle fatigue behavior of the newly developed Mg--x%Al--3%Ni(x=4, 5, 6, 7, mass fraction) extruded magnesium alloys with different contents of Al, the total strain--controlled low--cycle fatigue tests were performed at room temperature. The cyclic stress response, strain fatigue life and cyclic stress--strain behaviors were investigated for the hot--extruded Mg--x%Al--3%Ni alloys. The results of the low--cyclic fatigue tests show that the hot--extruded Mg--x%Al--3%Ni alloys exhibit the cyclic strain hardening during fatigue deformation. The dependences of the strain fatigue life on plastic strain amplitude and elastic strain amplitude can be described by the Coffin--Manson and Basquin equations, respectively. In the hot extruded Mg--x%Al--3%Ni alloys with different contents of Al, the extruded Mg--5%Al--3%Ni alloy gives the longest fatigue life and the highest fatigue resistance. In addition, a linear relation between the cyclic stress amplitude and cyclic strain amplitude can be noted for the hot--extruded Mg--x%Al--3%Ni alloys.

Key words:  Mg--x%Al--3%Ni alloy      hot--extrusion      cyclic stress response      fatigue life      cyclic stress--strain     
Received:  25 November 2008     
ZTFLH: 

TG146.2

 
Fund: 

Supported by Natural Science Foundation of Liaoning Province (No.20072039)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I7/856

[1] Liu J A, Li J X. Sichuan Nonferrous Met, 2007; (1): 2
(刘静安, 李建湘. 四川有色金属, 2007; (1): 2)

[2] Eliezer D, Aghion E, Froes F H. Adv Performance Mater, 1998; 5: 201
[3] Friedrich H, Schumann S. J Mater Process Technol, 2001; 117: 276
[4] Kojima Y. Mater Sci Forum, 2000; 350–351: 3
[5] Liu Y, Li Y Y, Zhang W W, Luo Z Q, Zhang D T. Light Met, 2002; (8): 56
(刘英, 李元元, 张卫文, 罗宗强, 张大童. 轻金属, 2002; (8): 56)

[6] Hu X J, Gao H W, Li C M, Liu S H, Liu L M. Shanghai Nonferrous Met, 2004; 25(3): 100
(胡晓菊, 高洪吾, 李长茂, 刘顺华, 刘黎明. 上海有色金属, 2004; 25(3): 100)

[7] Zhang S C, Duan H Q, Cai Q Z, Wei B K, Lin H T, Chen W C. Foundry, 2001; 50: 310
(张诗昌, 段汉桥, 蔡启舟, 魏伯康, 林汉同, 陈渭臣. 铸造, 2001; 50: 310)

[8] Li G Q, Wu G H, Fan Y, Ding W J. Foundry Technol, 2006; 27: 79
(李冠群, 吴国华, 樊昱, 丁文江. 铸造技术, 2006; 27: 79)

[9] Onga M S, Li Y, Blackwood D J, Ng S C. Mater Sci Eng, 2001; A304–306: 510
[10] Yao H B, Li Y,Wee A T S, Chai J W, Pan J S. Electrochim Acta, 2001; 46: 2649
[11] Chen L J, Liu Z, Hu Z Q. J Shenyang Univ Technol, 2005; 27: 253
(陈立佳, 刘 正, 胡壮麒. 沈阳工业大学学报, 2005; 27: 253)

[12] Potzies C, Kainer K U. Adv Eng Mater, 2004; 6: 281
[13] Raske D T, Morrow J. ASTM STP 465. Philadelphia: American Society for Testing and Materials, 1969: 1

[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[3] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[4] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[5] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[6] Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. 金属学报, 2019, 55(7): 811-820.
[7] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[8] Zhe SONG, Shengchuan WU, Yanan HU, Guozheng KANG, Yanan FU, Tiqiao XIAO. The Influence of Metallurgical Pores on Fatigue Behaviors of Fusion Welded AA7020 Joints[J]. 金属学报, 2018, 54(8): 1131-1140.
[9] CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY[J]. 金属学报, 2014, 50(9): 1046-1054.
[10] XIONG Ying CHENG Lixia . MULTIAXIAL FATIGUE LIFE PREDICTION FOR EXTRUDED AZ31B MAGNESIUM ALLOY[J]. 金属学报, 2012, 48(12): 1446-1452.
[11] YAO Jun; GUO Jianting; YUAN Chao; LI Zhijun. Low Cycle Fatigue Behavior Of Cast Nickel Base Superalloy K52[J]. 金属学报, 2005, 41(4): 357-362 .
[12] XIAO Lin; GU Haicheng(State Key Laboratory for Mechanical Behaviour of Materials; Xi'an Jiaotong Universityl Xi'an 710049). THE RELATIONSHIP BETWEEN PLASTIC DISSIPATED ENERGY, FRACTAL DIMENSION AND FATIGUE- LIFETIME OF ZIRCONIUM AND ZIRCALOY-4[J]. 金属学报, 1998, 34(7): 705-712.
[13] ZHANG Zhefeng; LI Guangyi; WANG Zhongguang; LI Shouxin (State Key Laboratory of Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). FATIGUE LIVES OF GRAIN BOUNDARY AND COMPONENT CRYSTALS IN A COPPER BICRYSTAL[J]. 金属学报, 1998, 34(1): 51-56.
[14] DING Chuanfu;YU Hui; WU Xueren (Beijing Institute of Aeronautical Materials;Beijing 100095). GROWTH BEHAVIOUR OF SMALL FATIGUE CRACK AND FATIGUE-LIFE PREDICTION FOR HIGH-STRENGTH STEEL 30CrMnSiNi2A[J]. 金属学报, 1997, 33(3): 277-286.
[15] LI Gang (State Key Laboratory of Fatikue and Fracture for Materials; Institute of Metal Research;Chinese Academy.of Sciences;Shenyang);GUO Jianting(Institute of Metal Research;Chinese Academy of Sciences;Shenyang);WANG Zhongguang(State Key Laboratory of Fatigue and Fracture for Materials;Institute of Metal Research;Chinese Academy of Sciences; Shenyang); I Hui; SHI Changxu(Institute of Metal Research; Chinese Academy of Sciences; Shenyang)(Manuscript received 3 November; 1993; in revised form 27 December; 1993). EFFECT OF CYCLIC STRESS AMPLITUDE AND MEAN STRESS ON HIGH TEMPERATURE FATIGUE LIFE OF Ni_3Al(B)ALLOY[J]. 金属学报, 1994, 30(9): 427-430.
No Suggested Reading articles found!