Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (7): 861-865    DOI:
论文 Current Issue | Archive | Adv Search |
FATIGUE FEATURES AND MECHANISM OF Al--7Si--0.3Mg CAST ALLOY UNDER NONPROPORTIONAL LOADINGS
MO Defeng1; HE Guoqiu1; ZHU Zhengyu1; LIU Xiaoshan1; ZHANG Weihua2
1 School of Materials Science and Engineering; Tongji University; Shanghai 200092 2 State Key Laboratory of Traction Power; Southwest Jiaotong University; Chengdu 610031
Cite this article: 

MO Defeng HE Guoqiu ZHU Zhengyu LIU Xiaoshan ZHANG Weihua. FATIGUE FEATURES AND MECHANISM OF Al--7Si--0.3Mg CAST ALLOY UNDER NONPROPORTIONAL LOADINGS. Acta Metall Sin, 2009, 45(7): 861-865.

Download:  PDF(1145KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Widely application of cast aluminum alloy requires an understanding of its cyclic deformation behavior which is material dependent, and it is a complex function of strain amplitude, loading path, etc. In this study, multi--axial fatigue tests were conducted on cast Al--7Si--0.3Mg alloy with the same equivalent strain amplitude of 0.22% under six multi--axial path loadings, which were proportional, circular, square, diamond, rectangle and ellipse paths. TEM was employed to investigate the dislocation structures of the fatigue failure specimens. Cyclic hardening dominates the whole fatigue process under every loading path, but the rate and extent of cyclic hardening are quite dependent on particular loading paths. The fatigue life under nonproportional loading is much lower than that under proportional loading, and it also depends on the various nonproportional loading paths. The specimen with circular path loading has the shortest life and the most severe cyclic hardening among all the loading paths. The continuously changing of direction of maximum shear--stress plane is attributed to the complicated dislocation substructures and severe stress concentration during the cyclic process. The interaction among dislocation, particle and cell boundary is the main reason for cyclic hardening. The structure and density of dislocation in fatigue failure specimens under various loading paths exhibit quite different. From double dislocation bands, multiple dislocation bands, labyrinth structure to cell structure, the dislocation mobility decreases and stress concentration degree increases.

Key words:  Al--7Si--0.3Mg alloy      nonproportional loading      multi--axial fatigue      dislocation     
Received:  25 November 2008     
ZTFLH: 

TG146.2

 
  TG111.8

 
Fund: 

国家自然科学基金项目50771073, 国家重点基础研究发展计划项目2007CB714705和新世纪优秀人才计划项目NCET--05--0388资助

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I7/861

[1] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De Smet P, Haszler A, Vieregge A. Mater Sci Eng, 2000;
A280: 37
[2] Wang M J, Huang D Y, Jiang H T. Heat Treat Met, 2006; 31(9): 34
(王孟君, 黄电源, 姜海涛. 金属热处理, 2006; 31(9): 34)

[3] Ding X Q, He G Q, Chen C S, Liu X S, Zhu Z Y. J Mater Sci Eng, 2005; 23: 302
(丁向群, 何国球, 陈成澍, 刘小山, 朱正宇. 材料科学与工程学报, 2005; 23: 302)

[4] Wang Q G, Apelian D, Lados D A. J Light Met, 2001; 1: 73
[5] Wang Q G, Apelian D, Lados D A. J Light Met, 2001; 1: 85
[6] McDowell D L, Gall K, HorstemeyerM F, Fan J. Eng Fract Mech, 2003; 70: 49
[7] Mo D F, He G Q, Hu Z F, Zhu Z Y, Chen C S, Zhang W H. Int J Fatigue, 2008; 30: 1843
[8] Kida S, Itoh T, Sakane M, Ohnami M, Socie D F. Fatigue Fract Eng Mater Struct, 1997; 20: 1375
[9] He G Q, Chen C S, Gao Q. Acta Metall Sin, 2003; 39: 715
(何国求, 陈成澍, 高庆. 金属学报, 2003; 39: 715)

[10] Wang S Z. Fatigue of Metal. Beijing: Science and Technology Press, 1985: 528
(王栓柱. 金属疲劳. 北京: 科学技术出版社, 1985: 528)

[11] Suresh S, translated by Wang Z G, et al. Fatigue of Materials. 2nd Ed., Beijing: National Defence Industry Press, 1999: 190
(Suresh S著; 王中光 等译. 材料的疲劳. 第2版, 北京: 国防工业出版社, 1999: 190)

[12] Wang Q G. Metall Mater Trans, 2004; 35A: 2707
[13] Nie J F, Muddle B C, Aaronson H I, Ringer S P, Hirth J P. Metall Mater Trans, 2002; 33A: 1649
[14] Chakrabarti D J, Laughlin D E. Prog Mater Sci, 2004; 49: 389

[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[4] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[5] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[6] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[8] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[9] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[10] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[12] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[13] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[14] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[15] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
No Suggested Reading articles found!