Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (4): 415-421    DOI:
论文 Current Issue | Archive | Adv Search |
MULTISCALE NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER AND GRAIN GROWTH DURING PLASMA DEPOSITION MANUFACTURING
KONG Fanrong 1;2; ZHANG Haiou 1; WANG Guilan3
1. State Key Laboratory of Digital Manufacturing Equipment and Technology; Huazhong University of Science and Technology; Wuhan 430074
2. Research Center for Advanced Manufacturing; Southern Methodist University; Dallas; TX 75205; USA
3. College of Material Science and Engineering; Huazhong University of Science and Technology; Wuhan 430074
Cite this article: 

KONG Fanrong ZHANG Haiou WANG Guilan. MULTISCALE NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER AND GRAIN GROWTH DURING PLASMA DEPOSITION MANUFACTURING. Acta Metall Sin, 2009, 45(4): 415-421.

Download:  PDF(4243KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A multidimensional numerical model was developed to investigate the temperature field, fluid field of liquid phase in the molten pool, and microstructure evolution in the plasma deposition manufacturing (PDM) process. A level--set approach was used to track the evolution of free surface of the molten pool, and an enthalpy--porosity model was introduced to deal with the transformation of solid and liquid phases. To understand the physical mechanism of thermal impact on the microstructure of the deposited layer, a Monte Carlo method combined with thermal--fluid analysis was applied to track the grain growth process in the PDM process. A numerical experiment of nickel--based alloy thin wall parts by PDM was implemented. The numerical results show that the microstructure of the deposited layer mainly depends on frequency  and amplitude of thermal impact, which is also influenced by variable processing parameters such as plasma power, scanning speed, and powder feed rate. Therefore, under full melting of fed powder, an increase of scanning speed could make the grain size of final microstructure finer to some extent.

Key words:  plasma deposition manufacturing (PDM)      Monte Carlo method      finite volume method      level--set approach      nickel base superalloy     
Received:  10 July 2008     
ZTFLH: 

TK121

 
  TG456.2

 
Fund: 

Supported by National Natural Science Foundation of China (No. 50474053) and High Technology Research and Development Program of China
(No. 2007AA04Z142)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I4/415

[1] Zhang H O, Xu J P, Wang G L. Surf Coat Technol, 2003; 112: 171
[2] Wang G L, Chen Y X, Zhang H O. Thin Solid Films, 2003; 435: 124
[3] Zhang H O, Kong F R, Wang G L, Zeng L F. J Appl Phys, 2006; 100: 123522
[4] Zhao X M, Chen J, He F, Tan H, Huang W D. Rare Met Mater Eng, 2007; 36: 216
(赵晓明, 陈 静, 何 飞, 谭华, 黄卫东. 稀有金属材料与工程. 2007; 36: 216)
[5] Li M Y, Kannatey–Asibu E. Weld J, 2002; 81(3): 37
[6] Nishimoto K, Saida K, Torii N, Ohshige H. Q J Jpn Weld Soc. 2003; 21: 256
[7] Wei Y H, Xu Y L, Dong Z B, Xiao J L. Key Eng Mater, 2007; 353–358: 1923
[8] Gao J H, Thompson R G. Acta Mater, 1996; 44: 4565
[9] Mishra S, Debroy T. Acta Mater, 2004; 52: 1183
[10] Kang X H, Du Q, Li D Z, Li Y Y. Acta Metall Sin, 2004;40: 452
(康秀红, 杜 强, 李殿中, 李依依.  金属学报, 2004; 40: 452)
[11] Kong F R, Zhang H O, Wang G L. Sci China, 2009; 39G: 213
(孔凡荣, 张海鸥, 王桂兰. 中国科学, 2009, 39G: 213)
[12] Patankar S V. Numerical Heat Transfer and Fluid Flow. Washington D. C., Hemisphere Publishing Corporation, 1980: 126
[13] Wang L, Felicelli S. Trans ASME J Manuf Sci Eng, 2007; 129: 1028

[1] Liu CAO, Fei SUN, Tao CHEN, Zihao TENG, Yulong TANG, Dunming LIAO. Numerical Simulation of Liquid-Solid Conversion Affecting Flow Behavior During Casting Filling Process[J]. 金属学报, 2017, 53(11): 1521-1531.
[2] Jieshan HOU,Jianting GUO,Chao YUAN,Lanzhang ZHOU. STUDY ON THE PRECIPITATION AND DISSOLUTION OF σ PHASE IN A HOT CORROSION RESISTANCE CAST NICKLE BASE SUPERALLOY[J]. 金属学报, 2016, 52(2): 168-176.
[3] HAN Guoming, CUI Chuanyong, GU Yuefeng, HU Zhuangqi, SUN Xiaofeng. INVESTIGATION OF TEMPERATURE DEPENDENCE OF PLC EFFECT IN A NICKEL BASE SUPERALLOY[J]. 金属学报, 2013, 49(10): 1243-1247.
[4] ZENG Qiang, YAN Ping, SHAO Chong, ZHAO Jingchen, HAN Fengkui,ZHANG Longfei. INVESTIGATION ON COARSENING BEHAVIORS OF SERRATED GRAIN BOUNDARIES IN K480 NICKEL BASE SUPERALLOY DURING LONG TERM AGING AT 900 ℃[J]. 金属学报, 2013, 49(1): 63-70.
[5] YAO Zhihao DONG Jianxin ZHANG Maicang. MICROSTRUCTURE CONTROL AND PREDICTION OF GH738 SUPERALLOY DURING HOT DEFORMATION
I. Construction of Microstructure Evolution Model
[J]. 金属学报, 2011, 47(12): 1581-1590.
[6] YAO Zhihao WANG Qiuyu ZHANG Maicang DONG Jianxin. MICROSTRUCTURE CONTROL AND PREDICTION OF GH738 SUPERALLOY DURING HOT DEFORMATION
II. Verification and Application of Microstructural Evolution Model
[J]. 金属学报, 2011, 47(12): 1591-1599.
[7] YAN Guangzong; PENG Zhifang. An Optimization Method For Estimating Phase Compositions And Amounts In Two—Phase Nickel Base Superalloys[J]. 金属学报, 2005, 41(4): 363-368 .
[8] ZHOU Li; LI Shouxin; WANG Yuechen; WANG Zhongguang. Calculation of the internal stresses at the γ/γ’ interface of DD8 single crystal nickel base superalloy after thermo-mechanical fatigue[J]. 金属学报, 2005, 41(3): 245-250 .
[9] ZHANG Beijiang; ZHAO Guangpu; XU Guohua; FENG Di. Hot deformation behavior and micro-structure evolution of superalloy GH742[J]. 金属学报, 2005, 41(11): 1207-1214 .
[10] CHANG Haiwei; CHEN Tao; LEI Mingkai. A Mathematical Model on Coalescence and Removal of Inclusion Particles in Continuous Casting Tundish[J]. 金属学报, 2004, 40(6): 629-.
[11] ZHAO Shuangqun; XIE Xishan; Gaylord D. Smith. Corrosion of A New Nickel Base Superalloy in Coal--Fired Boiler Environments[J]. 金属学报, 2004, 40(6): 659-.
[12] YUAN Chao ; GUO Jianting ; WANG Tieli ; YANG Hongcai ; WANG Shuhe ;ZHANG Hao (Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Materials and Metallurgy School; Northeastern University; Shenyang 110006). THE EFFECT OF APPLIED STRESS ORIENTATION ON THE HIGH TEMPERATURE CREEP BEHAIOUR OF DIRECTIONALLY SOLIDIFIED NICKEL BASE SUPERALLOY[J]. 金属学报, 1998, 34(7): 689-695.
[13] LI Tiefan; HU Wusheng; SHEN Jianian(State Key Laboratory of Corrosion Science; Institute of Corrosion and Prolection of Metals; Chinese Academy of Sciences; Shenyang 110015). HIGH TEMPERATURE OXIDATION PERFORMANCE OF SUPERALLOY M41[J]. 金属学报, 1995, 31(24): 527-534.
[14] XU Chi; SU Hang; CHEN Nianyi (Shanghai Institute of Metallurgy; Chinese Academy of Sciences; Shanghai 200050) LI Jie;TANG Dingxiang (Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022). COMPUTERIZED SIMULATION OF STRUCTURE OF DyF_3-BaF_2-LiF MOLTEN SYSTEM[J]. 金属学报, 1995, 31(15): 97-102.
[15] XU Chi;JIANG Naixiong;CHEN Nianyi Shanghai Institute of Metallurgy; Academia sinica. THERMODYNAMICS OF COMPUTERIZED SIMULATION OF MOLTEN LIF-KF SOLUTION BY MONTE CARLO METHOD[J]. 金属学报, 1991, 27(5): 144-147.
No Suggested Reading articles found!