Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (4): 390-395    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECTS OF AGING ON MICROSTRUCTURE AND MECHANICAL PROPERTY OF ULTRALOW CARBON ACICULAR FERRITE STEEL
GUO Aimin 1;2; ZOU Dehui1;2; YI Lunxiong3; DONG Hanxiong1; LI Pinghe1; LIU Kai4; WU Kaiming4
1.Institute of Research; Wuhan Iron and Steel (Group) Company;Wuhan 430080
2.School of Power and Mechanical Engineering; Wuhan University; Wuhan 430072
3.China Zhongtie Major Bridge Reconnaissance & Design Institute o. Ltd.; Wuhan 430050
4.Hubei Province Key Laboratory of Systems Science in Metallurgical Processing;Wuhan University of Science and Technology; Wuhan 430081
Cite this article: 

GUO Aimin ZOU Dehui YI Lunxiong DONG Hanxiong LI Pinghe LIU K WU Kaiming. EFFECTS OF AGING ON MICROSTRUCTURE AND MECHANICAL PROPERTY OF ULTRALOW CARBON ACICULAR FERRITE STEEL. Acta Metall Sin, 2009, 45(4): 390-395.

Download:  PDF(3006KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of aging temperature on the microstructure and mechanical property of ultra–low–carbon acicular ferrite steel was studied by utilizing OM, SEM, TEM, tensile and impact tests. The strength of the specimen is not obviously changed due to little precipitating amount of the second phase and little coarsening of microstructure when aged from 450 to 500 ℃. The rapid increase in strength appears and is attributed to the dispersive precipitations of  ε–Cu and Nb(C, N) when aged from 550 to 650℃. When aged above 650 ℃, the abrupt decrease in strength appears and is caused by over–aging, i.e., the coalescence of ferrite plates and coarsening of precipitates. When aged at 750℃ (in two–phase field), the toughness decreases abruptly, which is related to the formation of martensite/austenite (M/A) ithigher carbon content during cooling.

Key words:  ultra--low--carbon steel      acicular ferrite      aging       ε--Cu      precipitation     
Received:  28 May 2007     
ZTFLH: 

TG113

 
  TG142

 
Fund: 

Supported by National Basic Research Program of China (No.2004CB19102)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I4/390

[1] Wu K M, Li Z G. In: Xie Q H, Xu L J, eds., Proceeding 2nd Baosteel Biennial Academic Conference, Shanghai: Shanghai Scientific and  echnological Literature Publishing House, 2006: 403
(吴开明, 李自刚. 见: 谢企华, 徐乐江主编, 第二届宝钢学术会议论文集, 上海: 上海科学技术文献出版社, 2006: 403)
[2] Wu K M, Li Z G. J Iron Steel Res, 2007; 19(10): 1
(吴开明, 李自刚. 钢铁研究学报, 2007; 19(10): 1)
[3] Wang H B, Kim Y G, Lee S, Kim Y M, Kim N J, Yoo J Y. Metal Mater Trans, 2005; 36A: 2107
[4] Xiao F R, Liao B, Shan Y Y, Qiao G Y, Zhong Y, Zhang C, Yang K. Mater Sci Eng, 2006; A431: 41
[5] Shin S Y, Hwang B, Kim S, Lee S. Mater Sci Eng, 2006; A429: 196
[6] Morrison W B. In: Liu G Q, Wang F M, Wang Z B, Zhang H T, eds., Proc of HSLA Steels 2000, Beijing: Metallurgical Industry Press, 2000: 11
[7] Wang X M, He X L, Yang S W, Shang C J. ISIJ Int, 2002; 42: 1553
[8] Yang S W, Wang X M, Shang C J, He X L. J Univ Tech Beijing (Engl Ed), 2001; 8: 214
[9] Lee J L. Acta Metall Mater, 1994; 42: 3291
[10] Yang J R, Huang C Y, Huang C F. J Mater Sci, 1995; 30: 5036
[11] Gregg J M, Bhadeshia H K D H. Acta Mater, 1997; 45: 739
[12] Barbaro F J, Krauklis P, Easterling K E. Mater Sci Technol, 1989; 5: 1057
[13] Ricks R A, Howell P R, Barritle G S. J Mater Sci, 1982;17: 732
[14] Madariaga I, Romero S L, Guti´errez I. Metall Mater Trans, 1998; 29A: 1003
[15] Guo A M, Li S R, Guo J, Li P H, Ding Q F, Wu K M, He X L. Mater Charact, 2008, 59: 134
[16] Wu K M, Li Z G, Guo A M, He X L, Zhang L Q, Fang A H, Cheng L. ISIJ Int, 2006; 46: 161
[17] Wu K M. Scr Mater, 2006; 54: 569
[18] Wu K M, Inagawa Y, Enomoto M. Mater Charact, 2004; 52: 121
[19] Itman A, Cardoso K R, Kestenbach H J. Iron Steel Vana dium Titanium, 1998; 19(2): 59
(Itman A, Cardoso K R, Kestenbach H J. 钢铁钒钛, 1998, 19(2): 59)
[20] Yong Q L, Ma M T, Wu B R. Microalloyed Steel—Physics and Mechanics Metallurgy. Beijing: China Machine Press, 1989: 501
(雍歧龙, 马鸣图, 吴宝榕. 微合金钢—物理和力学冶金. 北京: 机械工业出版社,, 1989: 501)

[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[3] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[4] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[5] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[6] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[7] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[8] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[9] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[10] GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. 金属学报, 2022, 58(8): 1044-1054.
[11] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[12] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
[13] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[14] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[15] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
No Suggested Reading articles found!