Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (3): 314-319    DOI:
论文 Current Issue | Archive | Adv Search |
EVOLUTION OF MICROSTRUCTURE OF SEMISOLID METAL SLURRY IN ULTRASOUND FIELD
ZHAO Junwen;WU Shusen;WAN Li;CHEN Qihua;AN Ping
State Key Lab of Material Processing and Die & Mould Technology; Huazhong University of Science and Technology; Wuhan 430074
Cite this article: 

ZHAO Junwen WU Shusen WAN Li CHEN Qihua AN Ping. EVOLUTION OF MICROSTRUCTURE OF SEMISOLID METAL SLURRY IN ULTRASOUND FIELD. Acta Metall Sin, 2009, 45(3): 314-319.

Download:  PDF(1156KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructural evolution of semisolid ZL101 hypoeutectic Al--Si alloy solidified in ultrasound field was investigated. The results indicate that the morphology of primary particles is related closely to the temperature of the applied ultrasound field. The primary grains grow into globular shape when ultrasound is applied from 640 to 585 ℃ (nearly solidified temperature) When the ultrasound is applied from 610 (solid fraction 0.1) to 598 ℃ (applied 120 s), the originally formed dendrites are granulated. When the ultrasound is applied at 600 ℃ (solid fraction 0.25) and holding temperature for 120 s (about 595 ℃), a mixture structure consisted of dendrite and granulated grains is formed. The evolution mechanism of semisolid microstructure under ultrasound field was discussed.

Key words:  ultrasound      aluminum alloy      semisolid slurry      nondendritic microstructure      evolution mechanism     
Received:  25 June 2008     
ZTFLH: 

TG249.9

 
  O426.9

 
Fund: 

Supported by National Natural Science Foundation of China (No.50775086) and National High Technology Research and Development Program of China (No.2007AA03Z557)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I3/314

[1] Flemings M C. Metall Trans, 1991; 22A: 957
[2] Kirkwood D K. Int Mater Rev, 1994: 173
[3] Qie X W, Li J, Ma X D, Zhang Z T, Li T J. Acta MetallSin, 2008; 44: 414
(郄喜望, 李捷, 马晓东, 张忠涛, 李廷举. 金属学报, 2008; 44: 414)

[4] Li Y L, Li B M, Liu Y T, Gao C R, Dai E T. Chin J Nonferrous Met, 1999; 9: 719
(李英龙, 李宝绵, 刘永涛, 高彩茹, 戴恩泰. 中国有色金属学报, 1999; 9: 719)

[5] Abramov V, Abramov O, Bulgakov V, Sommer F. Mater Lett, 1998; 37: 27
[6] Jian X, Xu H, Meek T T, Han Q. Mater Lett, 2005; 59: 190
[7] Abdel–Rehim M, Reif W. Metallurgie, 1984; 38: 131
[8] Abramov O V. High–Intensity Ultrasonics: Theory and Industrial Applications. Amsterdam: Gordon and Breach Science Publishers, 1998: 320
[9] Eskin G I. Ultrasonic Treatment of Light Alloy Melts. Amsterdam: Gordon and Breach Science Publishers, 1998: 135
[10] Campbell J. Int Met Rev, 1981; 26: 71
[11] Kapustina O A. The Physical Principles of Ultrasonic Manufacturing. Moscow: Nauka, 1970: 45
[12] Yasuda K, Saiki Y, Kubo T, Kuwabara M, Yang J. Jpn J Appl Phys, 2007; 46B: 4939
[13] Zhao J W, Wu S S, Xie L Z. Spec Cast Nonferrous Alloys, 2007, 27: 846
(赵君文, 吴树森, 谢礼志. 特种铸造及有色合金, 2007; 27: 846)

[14] Suslick K S. Science, 1990; 247: 1439
[15] Wu S S,Wu X P, Xiao Z H. Acta Mater, 2004; 52: 3519

[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[4] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[7] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[8] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[9] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[10] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[11] ZHU Miaoyong, DENG Zhiyin. Evolution and Control of Non-Metallic Inclusions in Steel During Secondary Refining Process[J]. 金属学报, 2022, 58(1): 28-44.
[12] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[13] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
[14] LIU Gang, ZHANG Peng, YANG Chong, ZHANG Jinyu, SUN Jun. Aluminum Alloys: Solute Atom Clusters and Their Strengthening[J]. 金属学报, 2021, 57(11): 1484-1498.
[15] LI Jichen, FENG Di, XIA Weisheng, LIN Gaoyong, ZHANG Xinming, REN Minwen. Effect of Non-Isothermal Ageing on Microstructure and Properties of 7B50 Aluminum Alloy[J]. 金属学报, 2020, 56(9): 1255-1264.
No Suggested Reading articles found!