Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (3): 292-296    DOI:
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF SUPER--FINE SUBSTRUCTURE ON TOUGHNESS OF LOW--ALLOYING ULTRA--HIGH STRENGTH STRUCTURE STEEL
WANG Liuding1;DING Fucai1;WANG Baimin2;ZHU Ming3;ZHONG Yingliang2;LIANG Jinkui1
1 School of Science; Northwestern Polytechnical University; Xi'an 710072
2 Training Center for Engineering Practices; Northwestern Polytechnical University; Xi'an 710072
3 School of Materials; Northwestern Polytechnical University; Xi'an 710072
Cite this article: 

WANG Liuding DING Fucai WANG Baimin ZHU Ming ZHONG Yingliang LIANG Jinkui. INFLUENCE OF SUPER--FINE SUBSTRUCTURE ON TOUGHNESS OF LOW--ALLOYING ULTRA--HIGH STRENGTH STRUCTURE STEEL. Acta Metall Sin, 2009, 45(3): 292-296.

Download:  PDF(1275KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A series of low--alloying ultra--high strength structure steels (LUHSSS) which contain Si, Mn as the alloying elements are developed through controlling the transformation temperature, cooling rate and tempering parameters. The observations on the microstructure by means of TEM, SEM and AFM show that LUHSSS are composed of very fine and close ferrite (F) lathes and retained austenite (AR) of thin film shape with high stability, and no blocky AR and cementite are observed in steels. The discontinuous F lathes consist of several shear units and their thickness range is 75---100 nm. During low temperature tempering, the dislocations in the shear units move and finally form a number of homogeneous cell substructures with the diameter less than 17 nm. Under the condition of ultra--high strength (σb>1400 MPa), the multi--scale, multi--level and double--phase of microstructure significantly increase the impact absorption energy (AKV≈200 J). Furthermore, the mechanism of toughness improvement caused by cell substructures is analyzed.

Key words:  ultra--high strength steel      ferrite      retained austenite      shear unit      impact absorption energy      cell substructure     
Received:  19 September 2008     
ZTFLH: 

TF761.2

 
  TG142.1  
  TG113.25

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50771082 and 60776822)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I3/292

[1] Gao K, Wang L D, Zhu M, Cheng J D, Shi Y J, Kang M K. Acta Metall Sin, 2007; 43: 315
(高宽, 王六定, 朱明, 陈景东, 施易军, 康沫狂. 金属学报, 2007; 43: 315)

[2] Yang H S, Bhadeshia H K D H. Mater Sci Technol, 2008; 25: 335
[3] Caballero F G, Bhadeshia H K D H, Mawella K J A, Jones D G, Brown P. Mater Sci Technol, 2001; 17: 517
[4] Keehan E, Karlsson L, Andren H O, Bhadeshia H K D H. Sci Technol Weld Joining, 2006; 11: 10
[5] Caballero F G, Bhadeshia H K D H. Curr Opin Solid State Mater Sci, 2004; 8: 251
[6] Zhang M X. PhD Thesis, Northwestern Polytechnical Univesity, 1990
(张明星. 博士学位论文, 西北工业大学, 1990)
[7] Keehan E, Karlsson L, Andren H O, Bhadeshia H K D H. Sci Technol Weld Joining, 2006; 11: 1
[8] Kang M K, Sun J L, Yang Q M. Metall Trans, 1990; 21A: 853
[9] Wang L D, Zhu M, Zhou W M, Chen J D, Shi Y J, Chen G D, Zhang Q. Mater Sci Forum, 2007; 539–543: 4562
[10] Wang L D, Zhu M, Chen J D, Shi Y J, Chen G D. Trans Mater Heat Treat, 2007; 28: 43
(王六定, 朱明, 陈景东, 施易军, 陈国栋. 材料热处理学报, 2007; 28: 43)
[11] Guo Z. PhD Thesis, University of California, Berkeley, USA, 2001
[12] Zhao W Y, Wang Q Y, Sun Z Y, Ye X X. J Chin Electron Microsc Soc, 1999; 18: 549
(赵文俞, 王勤燕, 孙振亚, 叶先贤. 电子显微学报, 1999; 18: 549)
[13] Zhang M X, Wang J, Kang M K. Phys Test Chem Anal (Phys Test), 1993; 29(2): 6
(张明星, 王军, 康沫狂. 理化检验(物理分册), 1993; 29(2): 6)
[14] Kozeschnik E, Bhadeshia H K D H. Mater Sci Technol, 2008; 24: 343
[15] Wang X T. Metal Materials. Beijing: China Machine Press, 1987: 1
(王笑天. 金属材料学. 北京: 机械工业出版社, 1987: 1)

[16] Hossein N S, Movaghar G M R, Nili A M, Shirazi H. Mater Sci Eng, 2008; A473: 251
[17] Peet M, Babu S S, Miller M K, Bhadeshia H K D H. Scr Mater, 2004; 50: 1279
[18] Caballero F G, Miller M K, Babu S S, Garcia–Mateo C. Acta Mater, 2007; 55: 386
[19] Caballero F G, Miller M K, Garcia–Mateo C, Capdevila C, Babu S S. Acta Mater, 2007; 56: 191
[20] Jacques P J. Curr Opin Solid State Mater Sci, 2004; 8: 260
[21] Bhadeshia H K D H. Bainite in Steels. 2nd Ed., London: Institute of Materials, 2001: 28
[22] Smith G M. PhD Thesis, University of Cambridge, 1984
[23] Singh S B, Bhadeshia H K D H. Mater Sci Eng, 1998; A245: 72
[24] Bhadeshia H K D H. Mater Sci Eng, 2008; A481–482: 36
[25] Hu G L, Xie XW. Heat Treatment of Steel. 2nd Ed., Xi’an: Northwestern Polytechnical University Press, 2008: 298
(胡光立, 谢希文. 钢的热处理. 第2版, 西安: 西北工业大学出版社, 2008: 298)

[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[3] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[4] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[5] PENG Jun, JIN Xinyan, ZHONG Yong, WANG Li. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. 金属学报, 2022, 58(12): 1600-1610.
[6] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[7] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[8] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[9] Xingpin CHEN,Wenjia LI,Ping REN,Wenquan CAO,Qing LIU. Effects of C Content on Microstructure and Properties ofFe-Mn-Al-C Low-Density Steels[J]. 金属学报, 2019, 55(8): 951-957.
[10] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[11] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[12] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[13] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[14] Hao CHEN, Congyu ZHANG, Jianing ZHU, Zenan YANG, Ran DING, Chi ZHANG, Zhigang YANG. Austenite/Ferrite Interface Migration and Alloying Elements Partitioning: An Overview[J]. 金属学报, 2018, 54(2): 217-227.
[15] Ke ZHANG, Zhaodong LI, Fengli SUI, Zhenghai ZHU, Xiaofeng ZHANG, Xinjun SUN, Zhenyi HUANG, Qilong YONG. Effect of Cooling Rate on Microstructure Evolution and Mechanical Properties of Ti-V-Mo Complex Microalloyed Steel[J]. 金属学报, 2018, 54(1): 31-38.
No Suggested Reading articles found!