Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (2): 195-198    DOI:
论文 Current Issue | Archive | Adv Search |
EVOLUTION OF CARBIDE MORPHOLOGY PRECIPITATED AT GRAIN BOUNDARIES IN Ni–BASED ALLOY 690
LI Hui; XIA Shuang; ZHOU Bangxin; NI Jiansen; CHEN Wenjue
Institute of Materials; Shanghai University; Shanghai 200072
Cite this article: 

LI Hui XIA Shuang ZHOU Bangxin NI Jiansen CHEN Wenjue. EVOLUTION OF CARBIDE MORPHOLOGY PRECIPITATED AT GRAIN BOUNDARIES IN Ni–BASED ALLOY 690. Acta Metall Sin, 2009, 45(2): 195-198.

Download:  PDF(6603KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of grain boundary characters on the morphology evolution of the intergranular carbide in Ni--based alloy 690 with high proportional
low ∑coincidence site lattice (CSL) boundaries aged at 715 ℃ for 2---200 h were investigated by SEM. The results show that the sizes of
intergranular carbides decrease with ∑value decreasing, and only fine carbides at coherent ∑3 are almost not changed after aging for 200 h. Plate--like carbides precipitated near both incoherent ∑3 and ∑9 boundaries, and the carbide plates grow bigger with the aging time prolonging, in which the former precipitated near both sides of incoherent ∑3 boundary and the latter precipitated near only one side of ∑9 boundary. The morphology of carbide precipitated at ∑27 boundary is similar to that precipitated at the general high angle grain boundary, and no plate--like carbides are observed near these boundaries.

Key words:  carbide      grain boundary character      alloy 690      heat treatment     
Received:  14 July 2008     
ZTFLH: 

TG113.1

 
Fund: 

Supported by National Basic Research Program of China (No.2006CB605001), Innovation Fund of Shanghai University (Nos.A16–0110–08–006 and A10–0110–08–004)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I2/195

[1] Diercks D R, Shack W J, Muscar J. J Nucl Eng Des, 1999;194: 19
[2] Qiu S Y, Su X W, Wen Y, Yan F G, Yu Y H, He Y C.Nucl Power Eng, 1995; 16: 336
邱少宇, 苏兴万, 文 燕, 闫福广, 喻应华, 何艳春. 核动力工程, 1995; 16: 336)
[3] Kronberg M L, Wilson F H. Trans AIME, 1949; 185: 501
[4] Xia S, Zhou B X, Chen W J. J Mater Sci, 2008; 43: 2990
[5] Min K S, Nam S W. J Nucl Mater, 2003; 322: 91
[6] Spigarelli S, Cabibbo M, Evangelista E, Palumbo G. Mater Sci Eng, 2003; A352: 93
[7] Kai J J, Yu G P, Tsai C H, Liu M N, Yao S C. Metall Trans, 1989; 20A: 2057
[8] Li Q, Zhou B X. Acta Metall Sin, 2001; 37: 8
(李强, 周邦新. 金属学报, 2001; 37: 8)
[9] Lim Y S, Kim J S, Kim H P, Cho H D. J Nucl Mater,2004; 335: 108
[10] Hall E L, Briant C L. Metall Trans, 1984; 15A: 793
[11] Trillo E A, Murr L E. Acta Mater, 1999; 47: 235
[12] Zhou Y, Aust K T, Erb U, Palumbo G. Scr Mater, 2001;45: 49
[13] Hong H U, Rho B S, Nam S W. Mater Sci Eng, 2001;A318: 285
[14] Trillo E A, Murr L E. J Mater Sci, 1998; 33: 1263
[15] Sasmal B. Metall Mater Trans, 1999; 30A: 2791
[16] Xia S, Zhou B X, Chen W J, Wang W G. Scr Mater, 2006;54: 2019
[17] Palumbo G, Aust K T, Lehockey E M. Scr Mater, 1998;38: 1685
[18] Lewis M H, Hattersley B. Acta Metall, 1965; 13: 1159

[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[4] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[5] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[6] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[7] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[8] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[9] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[10] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[11] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[12] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[13] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[14] WANG Wenquan, WANG Suyu, CHEN Fei, ZHANG Xinge, XU Yuxin. Microstructure and Mechanical Properties of TiN/Inconel 718 Composites Fabricated by Selective Laser Melting[J]. 金属学报, 2021, 57(8): 1017-1026.
[15] WANG Yue, WANG Jijie, ZHANG Hao, ZHAO Hongbo, NI Dingrui, XIAO Bolv, MA Zongyi. Effects of Heat Treatments on Microstructure and Mechanical Properties of AlSi10Mg Alloy Produced by Selective Laser Melting[J]. 金属学报, 2021, 57(5): 613-622.
No Suggested Reading articles found!