|
|
EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe–Ni BASE ALLOY |
ZHAO Mingjiu; RONG Lijian |
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016 |
|
Cite this article:
ZHAO Mingjiu RONG Lijian. EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe–Ni BASE ALLOY. Acta Metall Sin, 2009, 45(2): 167-172.
|
Abstract Effects of B on the microstructure and hydrogen resistance performance in an Fe–Ni base alloy were investigated by means of optical microscopy, scanning electron microscopy, thermal hydrogen charging experiments and tensile tests. The results show that abundant η(Ni3Ti) phases precipitate at grain boundaries (GBs) in the alloy without boron (FN) after aging treatment, while only a few carbides precipitate at GBs in the alloy with boron (FNB). Tensile tests indicate that the FNB exhibites not only higher ductility but also lower hydrogen–induced ductility loss than those for FN alloy. Fracture observations show that the brittle intergranular fracture is the main feature of peak aging and over aging FN alloy and quite a few secondary cracks can be observed on fracture surface of the hydrogen charged samples due to the precipitation of η phase at GBs. However, the intragranular
fracture is dominant feature for the FNB alloy whether hydrogen charging or not.
|
Received: 21 August 2008
|
|
Fund: Supported by National Natural Science Foundation of China and Chinese Academy of Engineering Physics (No.10476030) |
[1] Cicco H D, Luppo M I, Gribaudo L M, Garcia J O. Mater Charact, 2004; 52: 85
[2] Ma L M, Liang G J, Fan C G, Li Y Y. Acta Metall Sin, 1997; 10: 206
[3] Thompson AW, Brooks J A. Metall Trans, 1975; 6A: 1431
[4] Brooks J A, Thompson A W. Metall Trans, 1993; 24A: 1983
[5] Rho B S, Hong H U, Nam S W. Scr Mater, 2000; 43: 167
[6] Li X Y, Zhang J, Rong L J, Li Y Y. J Mater Sci Eng, 2005; 23: 483
(李秀艳, 张 建, 戎利建, 李依依. 材料科学与工程学报, 2005; 23: 483)
[7] Zhang J, Li X Y, Rong L J, Zheng Y N, Zhu S Y. Acta Metall Sin, 2006; 42: 469
(张 建, 李秀艳, 戎利建, 郑永男, 朱升云. 金属学报, 2006; 42: 469)
[8] Li X Y, Li Y Y. Hydrogen Damaged of Austenitic Alloy. Beijing: Science Press, 2003: 1
(李秀艳, 李依依. 奥氏体合金的氢损伤. 北京: 科学出版社, 2003: 1)
[9] Fujwara M, Uchida H, Ohta S. J Mater Sci Lett, 1994; 13: 557
[10] Kennedy R L, Cao W D, Thomas W M. Adv Mater Pro, 1996; 149: 33
[11] Sellamuthu R, Giamei A F. Metall Trans, 1986; 17A: 419
[12] Wills V A, Mccartney D G. Mater Sci Eng, 1991; A145: 223
[13] Franzoni U, Marchetti F, Sturless S. Scr Metall, 1985; 19: 511
[14] Shulga A V. J Alloys Compd, 2007; 486: 155
[15] Horton J A, Mckamey C G, Miller M K, Cao W D,Kennedy R L. Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS AIME, 1997: 401
[16] Yao X X. Mater Sci Eng, 1999; A271: 353
[17] Sourmail T, Okuda T, Taylor J E. Scr Mater, 2004; 50: 1271
[18] Ducki K J, Hermanczyk M H, Kuc D. Mater Chem Phy, 2003; 81: 490
[19] Rho B S, Nam S W. Mater Sci Eng, 2000; A291: 54
[20] Li X Y, Zhang J, Rong L J, Li Y Y. Mater Sci Eng, 2008; A488: 547
[21] Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Sci Eng, 2003; A355: 96
[22] He X L, Chu Y Y, Ke J. Acta Metall Sin, 1982; 18: 1
(贺信莱, 褚幼义, 柯俊. 金属学报, 1982; 18: 1)
[23] Kurban M, Erb U, Aust K T. Scr Mater, 2006; 54: 1053
[24] Seto K, Larson D J,Warren P J, Smith G DW. Scr Mater, 1999; 40: 1029
[25] Wu Y X, Li X Y, Wang Y M. Acta Mater, 2007; 55: 4845 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|