Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (10): 1190-1198    DOI:
论文 Current Issue | Archive | Adv Search |
PHASE-FIELD SIMULATION OF TWO-PHASE GRAIN GROWTH WITH HARD PARTICLES
GAO Yingjun 1;2; ZHANG Hailin 1; JIN Xing 1; HUANG Chuanggao 1; LUO Zhirong1
1. School of Physics Science and Engineering; Guangxi University; Nanning 530004
2. International Centre for Materials Physics; Chinese Academy of Science; Shenyang 110016
Cite this article: 

GAO Yingjun ZHANG Hailin JIN Xing HUANG Chuanggao LUO Zhirong. PHASE-FIELD SIMULATION OF TWO-PHASE GRAIN GROWTH WITH HARD PARTICLES. Acta Metall Sin, 2009, 45(10): 1190-1198.

Download:  PDF(3474KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Grain growth, due to its importance in controlling the physical properties of a wide variety of materials, has been extensively investigated. Second–phase particles have the capacity to "pin" grain boundaries and therefore affect the grain growth behavior of polycrystalline materials profoundly. They reduce the mobility of grain boundaries and eventually, when a critical grain size is reached, arrest grain growth. Based on a diffuse–interface description, a computer simulation model for studying the microstructural evolution in two–phase solid has been developed. For a grain system with hard particles, the kinetics of two–phase grain growth with the third hard particles was investigated by phase field model with a continuum diffuse–interface field. A polycrystalline microstructure of temporal and spatial evolution of the three–phase–solid system was obtained by solving three kinetics equations. It is found that the pinning effect is enhanced with the increase of the size and the volume fraction of third–phase particles. The greater the volume fraction and size of third–phase particles are, the smaller the limited sizes of grain growth are. If the volume fraction of third–phase particle maintains a constant and the size of third–phase particles is smaller, then the pinning effect of third–phase particles is stronger. When third particles with two different sizes under the same volume fraction are introduced in the system of grain growth, the pinning effect of the particles is the best. The power growth law, grain morphology, critical grain size, grain growth dynamics and topology structure of two–phase polycrystalline materials simuated by phase–fielmodel are in well accordnce with the experimental results and theoretical results of other simulations.

Key words:  phase-field simulation      grain growth      hard particle      Zener pinning     
Received:  07 April 2009     
ZTFLH: 

TB115

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50661001 and 50061001)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I10/1190

[1] Voorhees W. Annu Rev Mater Sci, 1992; 22: 197
[2] French J D, Harmer M P. J Am Ceram Soc, 1990; 73: 2508
[3] Aikinson H V. Acta Metall, 1988; 36: 469
[4] Lang E F, Hirlinger M M. J Am Ceram Soc, 1987; 70: 827
[5] Song X Y, Markus K, Zhang J X. Acta Metall Sin, 2004;40: 1009
(宋晓艳, Markus K, 张久兴. 金属学报, 2004; 40: 1009)
[6] MaoWM, Zhao X B. Recrystallization and Grain Growth. Beijing: Metallurgical Industry Press, 1994: 25
(毛卫民, 赵新兵. 金属的再结晶与晶粒长大. 北京: 冶金工业出版社, 1994: 25)
[7] Krzanowshi J E, Allen S M. Acta Metall, 1983; 31: 213
[8] Cahn J W. Acta Metall, 1962; 10: 789
[9] Krzanowshi J E, Allen S M. Acta Metall, 1986; 34: 1045
[10] Allen S M, Cahn J W. Acta Metall, 1979; 27: 1085
[11] Kad B K, Hazzledine P M. Mater Sci Eng, 1997; A238: 70
[12] Radhakrishnan B, Zacharia T. Mater Sci Eng, 2002; A310: 227
[13] Anderson M P, Grest G S, Scolority D J. Scr Metall, 1989; 23: 753
[14] Qiang Y, Esche S K. Comput Mater Sci, 2003; 27: 259
[15] Xiao N, Zhang C, Li D, Li Y. Comput Mater Sci, 2008; 41: 366
[16] Oono Y, Pori S. Phys Rev Lett, 1987; 58: 836
[17] Chen L Q, Fan D N. J Am Ceram Soc, 1997; 79: 1163
[18] Chen L Q, Yang W. Phys Rev, 1994; 50B: 15752
[19] Cahn J W, Hilliard J E. J Chem Phys, 1958; 28: 258
[20] Takaki T, Hirouchi T, Hisakuni Y, Yamanaka A, Tomita Y. Mater Trans, 2008; 49: 2559
[21] Vaithyanathan V, Wolverton C, Chen L Q. Phys Rev Lett, 2002; 88: 125503
[22] Li Y L, Chen L Q. Appl Phys Lett, 2006; 88: 072905
[23] Takaki T, Hirouchi T, Hisakuni Y, Yamanaka A, Tomita Y. J Cryst Growth, 2008; 310: 2248
[24] Wang Y U. Acta Mater, 2006; 54: 953
[25] Li W, Gao L. Scr Mater, 2001; 44: 2269
[26] Guyer J E, Boittinger W J. Phys Rev, 2004; 69E: 021603
[27] Fan D N, Chen L Q. J Am Ceram Soc, 1997; 80: 1773
[28] Moelans N, Blanpain B, Wollants P. Acta Mater, 2006; 54: 1175
[29] Moelans N, Blanpain B,Wollants P. CALPHAD, 2008; 32: 268
[30] Moelans N, Blanpain B, Wollants P. Acta Mater, 2007; 55: 2173
[31] Suwa Y, Saito Y, Onodera H. Scr Mater, 2006; 55: 404
[32] Suwa Y, Saito Y, Onodera H. Acta Mater, 2007; 55: 6881
[33] Krill C E, Chen L Q. Acta Mater, 2002; 50: 3059
[34] Fan D N, Chen L Q. Acta Mater, 1997; 45: 3297
[35] Krzanowski J E, Allen S M. Acta Metall, 1983; 31: 213
[36] Fan D N, Chen L Q. Acta Mater, 1997; 45: 611
[37] Schehl M, Diaz L A, Acta Metall, 2002; 50: 1125
[38] Zener C S. Trans Met Soc AIME, 1948; 175: 15
[39] Longworth H P, Thompson C V. J Appl Phys, 1991; 69: 3929
[40] Long Y Q, Liu P, Liu Y, Zhang W M, Pan J S. Mater Lett, 2008; 62: 3039

[1] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[2] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[3] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[4] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[5] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[6] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
[7] Baojun ZHAO,Yuhong ZHAO,Yuanyang SUN,Wenkui YANG,Hua HOU. Effect of Mn Composition on the Nanometer Cu-Rich Phase of Fe-Cu-Mn Alloy by Phase Field Method[J]. 金属学报, 2019, 55(5): 593-600.
[8] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[9] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[10] Yajun HUI,Hui PAN,Wenyuan LI,Kun LIU,Bin CHEN,Yang CUI. Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel[J]. 金属学报, 2017, 53(2): 129-139.
[11] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[12] Tao JING, Sansan SHUAI, Mingyue WANG, Qiwei ZHENG. RESEARCH PROGRESS ON 3D DENDRITE MORPHO-LOGY AND ORIENTATION SELECTION DURING THE SOLIDIFICATION OF Mg ALLOYS: 3D EXPERIMENTAL CHARACTERIZATION AND PHASE FIELD MODELING[J]. 金属学报, 2016, 52(10): 1279-1296.
[13] ZHANG Hang, XU Qingyan, SHI Zhenxue, LIU Baicheng. NUMERICAL SIMULATION OF DENDRITE GRAIN GROWTH OF DD6 SUPERALLOY DURING DIRECTIONAL SOLIDIFICATION PROCESS[J]. 金属学报, 2014, 50(3): 345-354.
[14] ZHOU Deqiang, LIU Xiongjun, WU Yuan, WANG Hui, LV Zhaoping. RECRYSTALLIZATION BEHAVIOR AND ITS INFLU- ENCES ON MECHANICAL PROPERTIES OF AN ALUMINA-FORMING AUSTENITIC STAINLESS STEELS[J]. 金属学报, 2014, 50(10): 1217-1223.
[15] WU Yan, ZONG Yaping,ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION[J]. 金属学报, 2013, 49(7): 789-796.
No Suggested Reading articles found!