Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (1): 84-90    DOI:
论文 Current Issue | Archive | Adv Search |
CHARACTERISTICS AND FORMATION MECHANISM OF CORROSION SCALES ON LOW--CHROMIUM X65 STEELS IN CO2 ENVIRONMENT
SUN Jianbo1;LIU Wei1;CHANG Wei2;ZHANG Zhonghua3;LI Zhongtao2;YU Tian2;LU Minxu1
1 School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
2 Research Center; China National Offshore Oil Corporation; Beijing 100027
3 Technology Center; Baoshan Iron and Steel Corp.; Ltd.; Shanghai 201900
Cite this article: 

SUN Jianbo LIU Wei CHANG Wei ZHANG Zhonghua LI Zhongtao YU Tian LU Minxu. CHARACTERISTICS AND FORMATION MECHANISM OF CORROSION SCALES ON LOW--CHROMIUM X65 STEELS IN CO2 ENVIRONMENT. Acta Metall Sin, 2009, 45(1): 84-90.

Download:  PDF(1041KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion rates of X65 steels with different Cr contents were measured in CO2 environment under high temperature and high pressure condition. ESEM, EDS, XPS and SEM were employed to analyze the morphologies and characteristics of corrosion scales on the steels. The results show that the corrosion rate significantly decreased with increasing Cr content in the steels. An increase in Cr content< leads to a lower susceptibility to local corrosion. When the Cr content reaches up to 3%, the local corrosion can be eliminated. The competitive deposition of FeCO3 and Cr(OH)3 on low-chromium steels results in a multilayer structure of the scales. The scales on 1Cr-X65 and 3Cr-X65 steels have three-layer structure and scale on 5Cr-X65 steel has two-layer structure. Cr exists mainly as amorphous compound Cr(OH)3 in specific layer of the corrosion scales on low-chromium X65 steels. The Cr(OH)3 content of the scale increases remarkably with increasing Cr content in the steels. The high Cr(OH)3 content improves the protection performance of the scales and the corrosion resistance of low-chromium X65 steels. The rate of general corrosion and susceptibility to local corrosion are mainly dependent on the formation of codeposition layer of FeCO3 with Cr(OH)3 on low-chromium steels.

Key words:  low-chromium X65 steel      corrosion scale      corrosion rate      corrosion morphology      CO2 corrosion     
Received:  10 July 2008     
ZTFLH: 

TG172.9

 
Fund: 

Supported by National Natural Science Foundation of China (No.50571014)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I1/84

[1] Kermani M B, Morshed A. Corrosion, 2003; 59: 659
[2] Lu M X, Bai Z Q, Zhao X W, Zhao G X, Luo J H, Chen C F. Corros Prot, 2002; 23: 105
(路民旭, 白真权, 赵新伟, 赵国仙, 罗金恒, 陈长风. 腐蚀与防护, 2002; 23: 105)

[3] Kermani M B, Gonzales J C, Turconi G L, Perez T, Morales C. Corrosion 2005, Houston: NACE, 2005: 05111
[4] KimuraM, Miyata Y, Sakata K. Corrosion 2004, Houston: NACE, 2004: 04118
[5] Amaya H, Kondo K, Hirata H. Corrosion 98, Houston: NACE, 1998: 113
[6] Kermani M B, Gonzales J C, Turconi G L, Perez T, Morales C. Corrosion 2004, Houston: NACE, 2004: 04111
[7] Pigliacampo L, Gonzales J C, Turconi G L, Perez T, Morales C, Kermani M B. Corrosion 2006, Houston: NACE, 2006: 06133
[8] Takabe H, Ueda M. Corrosion 2002, Houston: NACE, 2002: 02041
[9] Muraki T, Hara T, Nose K, Asahi H. Corrosion 2002, Houston: NACE, 2002: 02272
[10] Nose K, Asahi H, Nice P I, Martin J. Corrosion 2001, Houston: NACE, 2001: 01082
[11] Nice P I, Takabe H, Ueda M. Corrosion 2000, Houston: NACE, 2000: 00154
[12] Inaba A, Kimura M, Yokokama H. Corros Sci, 1996; 38: 1449
[13] Chen C F, Lu M X, Zhao G X, Bai Z Q, Yan M L, Yang Y Q. Acta Metall Sin, 2003; 39: 848
(陈长风, 路民旭, 赵国仙, 白真权, 严密林, 杨延清. 金属学报, 2003; 39: 848)

[14] Kirchheim R, Heine B, Fischmeister H. Corros Sci, 1989; 29: 899
[15] Takabe H, Ueda M. Corrosion 2001, Houston: NACE, 2001: 01066.
[16] Chen C F, Lu M X, Sun D B, Zhang Z H, Chang W. Corrosion, 2005; 61: 594
[17] Nyborg R, Dugstad A. Corrosion 98, Houston: NACE, 1998: 29
[18] Crolet J L, Thevenot N, Nesic S. Corrosion, 1998; 54: 194
[19] Zhang G A, Lu M X, Wu Y S. Chin J Mater Res, 2005; 19: 537
(张国安, 路民旭, 吴荫顺. 材料研究学报, 2005; 19: 537)

[20] Chen C F, Lu M X, Zhao G X, Bai Z Q, Yan M L, Yang Y Q. Acta Metall Sin, 2002; 38: 411
(陈长风, 路民旭, 赵国仙, 白真权, 严密林, 杨延清. 金属学报, 2002; 38: 411)

[21] Chen C F ,Lu M X ,Zhao G X, Bai Z Q, Yan M L, Yang Y Q. J Chin Soc Corros Prot, 2003; 23: 330
(陈长风, 路民旭, 赵国仙, 白真权, 严密林, 杨延清. 中国腐蚀与防护学报, 2003; 23: 330)

[22] Dugstad A. Corrosion 2006, Houston: NACE, 2006: 06111
[23] Benoit R. Database XPS: Element or Energy [2008–07–01]
http://www.lasurface.com/database/elementxps.php
[24] Ikeda A, Ueda M. Predicting CO2 Corrosion in the Oil and Gas Industry. London: The Institute of Materials, 1994: 59
[25] Dean J A. Lang′s Handbook of Chemistry. 11th Ed., New York: McGraw–Hill Book Company, 1973: 7
[26] Sato N. Corros Sci, 1987; 27: 421

[1] Runzhi QIN, Yanxia DU, Minxu LU, Li OU, Haiming SUN. Study of Interference Parameters Variation Regularity and Corrosion Behavior of X80 Steel in Guangdong Soil Under High Voltage Direct Current Interference[J]. 金属学报, 2018, 54(6): 886-894.
[2] Hui ZHANG, Yanxia DU, Wei LI, Minxu LU. Investigation on AC-Induced Corrosion Behavior and Product Film of X70 Steel in Aqueous Environment with Various Ions[J]. 金属学报, 2017, 53(8): 975-982.
[3] Wei XU,Xin LU,Yanxia DU,Qingyu MENG,Ming LI,Xuanhui QU. Corrosion Resistance of Ti-Fe Binary Alloys Fabricated by Powder Metallurgy[J]. 金属学报, 2017, 53(1): 38-46.
[4] Lining XU,Bei WANG,Minxu LU. CORROSION BEHAVIOR OF 6.5%Cr STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE CO2 ENVIRONMENT[J]. 金属学报, 2016, 52(6): 672-678.
[5] Liang WEI, Xiaolu PANG, Kewei GAO. CORROSION MECHANISM DISCUSSION OF X65 STEEL IN NaCl SOLUTION SATURATED WITH SUPERCRITICAL CO2[J]. 金属学报, 2015, 51(6): 701-712.
[6] SUN Chong, SUN Jianbo, WANG Yong, WANG Shijie, LIU Jianxin. CORROSION MECHANISM OF OCTG CARBON STEEL IN SUPERCRITICAL CO2/OIL/WATER SYSTEM[J]. 金属学报, 2014, 50(7): 811-820.
[7] PENG Xin WANG Jia SHAN Chuan WANG Haijie LIU Zaijian ZOU Yan. CORROSION BEHAVIOR OF LONG–TIME IMMERSED RUSTED CARBON STEEL IN FLOWING SEAWATER[J]. 金属学报, 2012, 48(10): 1260-1266.
[8] GUO Shaoqiang XU Lining CHANG Wei MI Yarong LU Minxu. EXPERIMENTAL STUDY OF CO2 CORROSION OF 3Cr PIPE LINE STEEL[J]. 金属学报, 2011, 47(8): 1067-1074.
[9] Bai-Gang AN. ATMOSPHERIC CORROSION OF PURE COPPER DURING INITIAL EXPOSURE STAGE IN SHENYANG ATMOSPHERE[J]. 金属学报, 2007, 42(1): 77-81 .
[10] WANG Shouyan; SONG Shizhe. Corrosion Morphology Diagnosing Syste Of Metallic Materials In Seawater Based On Fractal[J]. 金属学报, 2004, 40(1): 94-98 .
No Suggested Reading articles found!