Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (6): 672-678    DOI: 10.11900/0412.1961.2015.00559
Orginal Article Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF 6.5%Cr STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE CO2 ENVIRONMENT
Lining XU(),Bei WANG,Minxu LU
Corrosion and Protection Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Lining XU,Bei WANG,Minxu LU. CORROSION BEHAVIOR OF 6.5%Cr STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE CO2 ENVIRONMENT. Acta Metall Sin, 2016, 52(6): 672-678.

Download:  HTML  PDF(1029KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the oil and gas industry, CO2 in reservoirs generally causes severe corrosion of C steel in pipelines. Adding Cr to C steel can enhance CO2 corrosion performance by a factor of at least 3, and even up to 10 times and more, whilst maintain a cost penalty less than 1.5 times that of C steels. Corrosion behavior of 6.5%Cr steel in high temperature and high pressure CO2 environment is investigated in this work. The corrosion rate of 6.5%Cr steel at 80 ℃ and 0.8 MPa is measured by autoclave. The surface and cross-sectional morphology is studied by SEM, and the enrichment of Cr in the corrosion scale is investigated by EDS. The change of LPR and EIS results with corrosion time is studied by high temperature and high pressure electrochemical tests. According to the test results of ion concentration in the solution, the mechanism of corrosion scale growth is discussed. The results show that the corrosion rate of 6.5%Cr steel is 0.72 mm/a. The Cr enriches in the corrosion scale, and the Cr/Fe ratio is higher than 5∶1. Under different corrosion time, the concentration of Cr3+ in the solution is always low, which demonstrates that Cr seldom enters into solution.

Key words:  6.5%Cr steel      CO2 corrosion      high temperature and high pressure      corrosion scale      Cr enrichment     
Received:  04 November 2015     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00559     OR     https://www.ams.org.cn/EN/Y2016/V52/I6/672

Fig.1  Microstructure of 6.5%Cr steel
Fig.2  Schematic of high temperature and high pressure (HTHP) autoclave used to perform weight loss test
Fig.3  Schematic of HTHP autoclave used to perform electrochemical test (WE, CE and RE—working, counter and reference electrode)
Fig.4  Macroscopic morphologies of 6.5%Cr steel exposed under 80 ℃ and 0.8 MPa CO2 partial pressure for 240 h (a) before pickling (b) after pickling
Fig.5  Corrosion scales microscopic morphologies of 6.5%Cr steel exposed for 120 h (a) and 240 h (b), and EDS analysis of white particle (c)
Fig.6  Cross-sectional microscopic morphologies (a, b) and corresponding EDS analyses (c, d) of 6.5%Cr steel scale exposed for 120 h (a, c) and 240 h (b, d)
Fig.7  Cross-sectional SEM image of specimen exposed for 120 h (a), and EDS map scanning morphologies of Cr (b), Fe (c) and O (d)
Fig.8  Linear polarization resistance (Rp) result of 1/Rp varying with time (t)
Fig.9  Nyquist diagram of 6.5%Cr steel exposed at different times
Time / h Fe2+ / (mgL-1) Cr3+ / (mgL-1)
0 3.9 <0.10
2 13.6 0.15
4 19.5 <0.10
6 34.8 0.21
10 41.4 <0.10
24 68.5 <0.10
48 46.9 <0.10
72 49.2 <0.10
96 59.8 0.11
120 32.5 <0.10
Table 1  Ion concentration of the test solution near the 6.5%Cr steel surface after high temperature and high pressure CO2 corrosion under different times
[1] Sun J B, Liu W, Chang W, Zhang Z H, Li Z T, Yu T, Lu M X.Acta Metall Sin, 2009; 45: 84
[1] (孙建波, 柳伟, 常炜, 张忠铧, 李忠涛, 于湉, 路民旭. 金属学报, 2009; 45: 84)
[2] Guo S Q, Chang W, Mi Y R, Lu M X.Acta Metall Sin, 2011; 47: 1067
[2] (郭少强, 常炜, 密雅荣, 路民旭. 金属学报, 2011; 47: 1067)
[3] Kermani M B, Morshed A B.Corrosion, 2003; 59: 659
[4] Pigliacampo L, Gonzales J C, Turconi G L. Corrosion2006, Houston: NACE, 2006: Paper No.06133
[5] Nice P I, Takabe H, Ueda M. Corrosion2000, Houston: NACE, 2000: Paper No.00154
[6] Takabe H, Ueda M. Corrosion2002, Houston: NACE, 2002: Paper No.02041
[7] Kermani M B, Turconi G, Perez T E, Morales C. Corrosion2004, Houston: NACE, 2004: Paper No.04111
[8] Dugstad A, Hemmer H, Seiersten M. Corrosion2000, Houston: NACE, 2000: Paper No.00024
[9] Paolinelli L D, Pérez T, Simison S N. Corrosion2007, Houston: NACE, 2007: Paper No.07331
[10] Muraki T, Asahi H, Hara T. Corrosion2002, Houston: NACE, 2002: Paper No.02272
[11] Ronge T, Steinsmo U, Eggen T G. Corrosion1996, Houston: NACE, 1996: Paper No.96033
[12] Takabe H, Ueda M. Corrosion2001, Houston: NACE, 2001: Paper No.01066
[13] Ueda M, Ikeda A. Corrosion1996, Houston: NACE, 1996: Paper No.96013
[14] Chen C F, Lu M X, Sun D B.Corrosion, 2005; 6: 594
[15] Nice P I, Ueda M. Corrosion1998, Houston: NACE, 1998: Paper No.003
[16] Guo S Q, Xu L N, Chang W, Lu M X.Corros Sci, 2012; 63: 246
[17] Chen T H, Xu L N, Lu M X, Chang W, Zhang L. Corrosion2011, Houston: NACE, 2011: Paper No.11074
[18] Xu L N, Guo S Q, Chang W, Chen T H, Hu L H, Lu M X.Appl Surf Sci, 2013; 270: 395
[19] Xu L N, Zhu J Y, Lu M X, Zhang L, Chang W.Int J Min Met Mater, 2015; 22: 502
[20] Zhu J Y, Xu L N, Lu M X, Zhang L, Chang W, Hu L H.Corros Sci, 2015; 93: 336
[21] Luo Q H, Ren J G, Shen M C, Dai A B.Acta Crystallographica, 1983; 4: 407
[21] (罗勤慧, 任建国, 沈孟长, 戴安邦. 高等学校化学学报, 1983; 4: 407)
[22] Chen T H. Master Thesis, University of Science and Technology Beijing, 2010
[22] (陈太辉. 北京科技大学硕士学位论文, 2010)
[23] Zhu J Y, Xu L N, Lu M X.Corrosion, 2015; 71: 854
[24] Zhu J Y, Xu L N, Lu M X, Zhang L, Chang W.Royal Soc Chem Adv, 2015; 5: 18518
[1] ZHANG Litao,WANG Jianqiu. STRESS CORROSION CRACK PROPAGATION BEHAVIOR OF DOMESTIC FORGED NUCLEAR GRADE 316L STAINLESS STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE WATER[J]. 金属学报, 2013, 49(8): 911-916.
[2] LI Xiaohui WANG Jianqiu HAN En–Hou KE Wei. CORROSION BEHAVIOR OF NUCLEAR GRADE ALLOYS 690 AND 800 IN SIMULATED HIGH TEMPERATURE AND HIGH PRESSURE PRIMARY WATER OF PRESSURIZED WATER REACTOR[J]. 金属学报, 2012, 48(8): 941-950.
[3] LI Xiaohui HUANG Fa WANG Jianqiu HAN En-Hou KE Wei. INFLUENCES OF TiN INCLUSION ON CORROSION AND STRESS CORROSION BEHAVIORS OF ALLOY 690 TUBE IN HIGH TEMPERATURE AND HIGH PRESSURE WATER[J]. 金属学报, 2011, 47(7): 847-852.
[4] SUN Jianbo LIU Wei CHANG Wei ZHANG Zhonghua LI Zhongtao YU Tian LU Minxu. CHARACTERISTICS AND FORMATION MECHANISM OF CORROSION SCALES ON LOW--CHROMIUM X65 STEELS IN CO2 ENVIRONMENT[J]. 金属学报, 2009, 45(1): 84-90.
[5] XU Bin; CUI Jianjun; WANG Shuhua; LI Musen; LI Chengmei; FENG Liming. Fine Structures Of The Fe--Based Metal Film Covering Synthetic Diamond Single Crystal[J]. 金属学报, 2005, 41(4): 444-448 .
[6] WANG Kuixiang; HAO Zhaoyin; DENG Jingchuan; LIU Milan; LU Guohui(Jilin University; Changchun 130073)(Manuscript received 1995-06-19; in revised form 1995-09-16). M SSBAUER SPECTRA OF FOUR Fe-BASED ALLOYS[J]. 金属学报, 1996, 32(5): 469-473.
No Suggested Reading articles found!