Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (7): 811-820    DOI: 10.3724/SP.J.1037.2013.00812
Current Issue | Archive | Adv Search |
CORROSION MECHANISM OF OCTG CARBON STEEL IN SUPERCRITICAL CO2/OIL/WATER SYSTEM
SUN Chong1, SUN Jianbo1(), WANG Yong1, WANG Shijie2, LIU Jianxin2
1 College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580
2 Oil Production Research Institute, Shengli Oilfield of Sinopec, Dongying 257000
Cite this article: 

SUN Chong, SUN Jianbo, WANG Yong, WANG Shijie, LIU Jianxin. CORROSION MECHANISM OF OCTG CARBON STEEL IN SUPERCRITICAL CO2/OIL/WATER SYSTEM. Acta Metall Sin, 2014, 50(7): 811-820.

Download:  HTML  PDF(9636KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The supercritical CO2 corrosion problems of oil country tubular goods (OCTG) become increasingly prominent along with the application of CO2 flooding enhanced oil recovery (EOR) technique and the exploitation of deep oil wells under high temperature and high pressure. Actually, OCTG steel often suffers from multiphase fluid corrosion of crude oil, water and supercritical CO2 at different stages of oil and gas production. However, studies about CO2 corrosion of carbon steel used for oil and gas production generally are carried out considering only the aqueous phase without proper consideration of the oil phase that may be present. The crude oil in crude oil/water production environments is a key factor affected the corrosion behavior of carbon steel. Corrosion rate and corrosion type of J55 steel were investigated under the conditions of different oil/water ratios saturated with supercritical CO2. SEM, EDS and XRD were employed to analyze the morphology and characteristic of corrosion scale on the steel. The corrosion models were developed to understand the corrosion mechanism with consideration of a variation of oil/water ratio in reality. The results show that uniform corrosion occurs along with the lower corrosion rate due to the protection of crude oil when the water cut of crude oil is within the range, i.e., 0~30% and the water-in-oil fluid is formed. But the local corrosion rate of the steel increases rapidly due to the inhomogeneous adsorption of crude oil with the fluid changing from water-in-oil to oil-in-water emulsion when the water cut is between 30% and 75%. The corrosion products deposited on the steel surface change the wettability of oil and water phase, therefore, water phase can preferentially wet the localized deposited scale, leading to the development of pitting corrosion under the scale. However, when the water cut is higher than 75% and the oil-in-water fluid is formed, water phase infiltrates the metal surface that blocks the corrosion inhibition of crude oil for the steel, hence, the corrosion rate increases dramatically. The localized failure of corrosion scale due to scouring action of the fluid and the dissolution of aggressive medium leads to mesa corrosion on the steel. When the water cut is 100%, serious uniform corrosion occurs as a result of the strong corrosiveness of supercritical CO2 dissolved in the water phase. Furthermore, crude oil can weaken the dissolution of corrosion scale in the supercritical corrosive medium, which modifies the grain size, morphology and chemical composition of corrosion scale and improves the protection performance of the scale.

Key words:  CO2 corrosion      supercritical CO2      crude oil      water cut      J55 steel     
Received:  13 December 2013     
ZTFLH:  TG172.9  
Fund: Supported by National Science and Technology Pillar Program During the Twelfth Five-year Plan Period (No.2012BAC24B03), Fundamental Research Funds for the Central Universities (No.14CX05020A) and Natural Science Foundation of Shandong Province (No.ZR2010EM034)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00812     OR     https://www.ams.org.cn/EN/Y2014/V50/I7/811

Fig.1  

高温高压下CO2腐蚀实验装置示意图

Fig.2  

原油含水率对J55钢平均腐蚀速率的影响

Fig.3  

不同原油含水率下J55钢的腐蚀表面宏观形貌

Fig.4  

不同原油含水率下J55钢去除腐蚀产物膜后表面宏观形貌

Fig.5  

J55钢腐蚀产物膜表面SEM像

Fig.6  

J55钢腐蚀产物膜截面的SEM背散射电子像

Fig.7  

J55钢腐蚀产物膜表面高倍SEM像

Fig.8  

J55钢腐蚀产物膜EDS分析

Fig.9  

J55钢腐蚀产物膜的XRD谱

Fig.10  

S和Cl元素在腐蚀产物膜截面上的分布

Fig.11  

腐蚀速率随原油含水率变化的分区图

Fig.12  

超临界CO2/油/水系统中J55钢腐蚀产物膜结构特征和腐蚀形态示意图

[1] Kermani M B, Morshed A. Corrosion, 2003; 59: 659
[2] Zhang X Y,Di C,Lei L C. Corrosion and Control of CO2. Beijing: Chemical Industry Press, 2000: 15
(张学元,邸 超,雷良才. 二氧化碳腐蚀与控制. 北京: 化学工业出版社, 2000: 15)
[3] Efird K D, Jasinski R J. Corrosion, 1989; 45: 165
[4] Castillo M, Rincón H, Duplat S, Vera J, Bacón E. Corrosion 2000, Houston: NACE, 2000: 00005
[5] Méndez C, Duplat S, Hernández S, Vera J. Corrosion 2001, Houston: NACE, 2001: 01030
[6] De Waard C, Smith L M, Craig B D. Corrosion 2003, Houston: NACE, 2003: 03629
[7] Efird K D, Smith J L, Blevins S E, Davis N D. Corrosion 2004, Houston: NACE, 2004: 04366
[8] Craig B D. Mater Perform, 1996; 8: 61
[9] Hernandez S E, Duplat S, Vera J R, Baron E. Corrosion 2002, Houston: NACE, 2002: 02293
[10] Ayello F, Robbins W, Richter S, Nesic S. Corrosion 2011, Houston: NACE, 2011: 11060
[11] Wei A J, Huo F Y, Wang Q, Dang L, Huang J Z. Corros Prot, 2009; 30: 383
(魏爱军, 霍富永, 王 茜, 党 丽, 黄建忠. 腐蚀与防护, 2009; 30: 383)
[12] Rincon H, Hernandez S, Salazar J, Case R, Vera J. Corrosion 99, Houston: NACE, 1999: 602
[13] Wu S L, Cui Z D, Li C F, Zhu S L, Yang X J. J Chin Soc Corros Prot, 2003; 23: 340
(吴水林, 崔振铎, 李春富, 朱胜利, 杨贤金. 中国腐蚀与防护学报, 2003; 23: 340)
[14] Cui Z D, Wu S L, Zhu S L, Yang X J. Appl Surf Sci, 2006; 252: 2368
[15] Sun J B, Liu W, Chang W, Zhang Z H, Li Z T, Yu T, Lu M X. Acta Metall Sin, 2009; 45: 84
(孙建波, 柳 伟, 常 炜, 张忠铧, 李忠涛, 于 湉, 路民旭. 金属学报, 2009; 45: 84)
[16] Cui Z D, Wu S L, Li C F, Zhu S L, Yang X J. Mater Lett, 2004; 58: 1035
[17] King M B, Mubarak A, Kim J D. J Supercrit Fluids, 1992; 5: 296
[18] Choi Y S, Nesic S. Corrosion 2009, Houston: NACE, 2009: 09256
[19] Zhang Y C, Gao K W, Schmitt G. Corrosion 2011, Houston: NACE, 2011: 11378
[20] Dugstad A. Corrosion 2006, Houston: NACE, 2006: 06111
[21] Chen C F, Lu M X, Zhao G X, Bai Z Q, Yan M L, Yang Y Q. Acta Metall Sin, 2002; 38: 411
(陈长风, 路民旭, 赵国仙, 白真权, 严密林, 杨延清. 金属学报, 2002; 38: 411)
[22] Sun J B, Zhang G A, Liu W, Lu M X. Corros Sci, 2012; 57: 131
[23] Cheng C F, Zhao G X, Lu M X, Yang Y Q, Li H L. J Chin Soc Corros Prot, 2002; 22: 143
(陈长风, 赵国仙, 路民旭, 杨延清, 李鹤林. 中国腐蚀与防护学报, 2002; 22: 143)
[24] Lotz U, Van Bodegom L, Ouwehand C. Corrosion, 1991; 47: 635
[25] Zhao G X. Physical Chemistry of Surfactant. Beijing: Peking University Press, 1984: 387
(赵国玺. 表面活性剂物理化学. 北京: 北京大学出版社, 1984: 387)
[26] Carew J A, Al-Sayegh A, Al-Hashem A. Corrosion 2000, Houston: NACE, 2000: 00061
[27] Nesic S. Corros Sci, 2007; 49: 4308
[28] Chen C F, Lu M X, Chang W, Zhao G X, Bai Z Q. Corrosion 2003, Houston: NACE, 2003: 03342
[1] Jianan ZOU, Xiaolu PANG, Kewei GAO. Crevice Corrosion of X70 and 3Cr Low Alloy Steels Under Supercritical CO2 Condition[J]. 金属学报, 2018, 54(4): 537-546.
[2] Liang WEI, Xiaolu PANG, Kewei GAO. CORROSION MECHANISM DISCUSSION OF X65 STEEL IN NaCl SOLUTION SATURATED WITH SUPERCRITICAL CO2[J]. 金属学报, 2015, 51(6): 701-712.
[3] GUO Shaoqiang XU Lining CHANG Wei MI Yarong LU Minxu. EXPERIMENTAL STUDY OF CO2 CORROSION OF 3Cr PIPE LINE STEEL[J]. 金属学报, 2011, 47(8): 1067-1074.
[4] SUN Jianbo LIU Wei CHANG Wei ZHANG Zhonghua LI Zhongtao YU Tian LU Minxu. CHARACTERISTICS AND FORMATION MECHANISM OF CORROSION SCALES ON LOW--CHROMIUM X65 STEELS IN CO2 ENVIRONMENT[J]. 金属学报, 2009, 45(1): 84-90.
No Suggested Reading articles found!